Practice: Solving ODE by separation of variables

Calculus Level 2

What is the solution of the ordinary differential equation y = x d y d x ln x y = x \frac{dy}{dx} \ln x that satisfies y ( 3 ) = ln 81 ? y(3)=\ln 81?

y = 3 ln x + x y=3\text{ln}x+x y = ln ( x + x 2 ) y=\text{ln}(x+{x}^{2}) y = 4 ln x y=4 \text{ln}x y = 2 ln ( x 3 + 2 x 2 ) y=2\text{ln}({x}^{3}+2{x}^{2})

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

d y y = d x x ln ( x ) ln ( y ) = ln ( ln ( x ) ) + C \frac{dy}{y}=\frac{dx}{x\cdot \ln(x)} \Rightarrow \ln(y)=\ln(\ln(x))+C y = C ln ( x ) y=C\cdot \ln(x) Using the initial value we have ln ( 81 ) = C ln ( 3 ) C = 4 \ln(81)=C\ln(3) \Rightarrow C=4 y = 4 ln ( x ) \Rightarrow y=4\ln(x)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...