The argument of a complex number.

Algebra Level 3

Evaluate φ = arg [ cos ( π 2 ) e i π + i sin ( 2 i π ) ] \varphi=\operatorname{arg}\left[ \cos\left(\dfrac\pi2\right)e^{i\pi}+i\sin(2i\pi) \right] where φ ( π , π ] \varphi\in(-\pi,\pi] .


The answer is 3.1415.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

φ = arg ( cos ( π 2 ) e i π + i sin ( 2 i π ) ) By Euler’s formula: e i θ = cos θ + i sin θ = arg ( ( 0 ) e i π + i e 2 π e 2 π 2 i ) arg ( 267.745 ) = arg ( 267.745 e i π ) = π for φ ( π , π ] \begin{aligned} \varphi & = \arg \left(\cos \left(\frac \pi 2 \right) e^{i\pi} + i \color{#3D99F6} \sin (2i\pi) \right) & \small \color{#3D99F6} \text{By Euler's formula: }e^{i\theta} = \cos \theta + i\sin \theta \\ & = \arg \left( (0) e^{i\pi} + i \cdot \color{#3D99F6} \frac {e^{-2\pi} - e^{2\pi}}{2i} \right) \\ & \approx \arg \left(-267.745 \right) \\ & = \arg \left(267.745e^{i\pi} \right) \\ & = \boxed \pi & \small \color{#3D99F6} \text{for }\varphi \in (-\pi, \pi] \end{aligned}

Finn Hulse
May 15, 2014

Because cos π 2 = 0 \cos{\dfrac{\pi}{2}}=0 , the real part evaluates to 0 0 . Taking arg ( i sin ( 2 i π ) ) \arg{(i\sin{(2i\pi)})} , we get π \boxed{\pi} .

I stopped after calculating the real part, what is arg? @Finn Hulse

Mardokay Mosazghi - 7 years ago

Log in to reply

The argument function.

Finn Hulse - 7 years ago

I'd like to add: i sin(2i(pi)) = - sinh(2(pi)) and since -sinh(2pi) is real, so arg = tan^(-1) (0/-sinh(2pi)) = pi = 3.14(approximate).

John Ashley Capellan - 7 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...