Practice: the definite integral of a floor function.

Calculus Level pending

Evaluate the following integral: 13 26 x 2 x 2 d x . \int_{-13}^{26}\left\lfloor x-2\left\lfloor\dfrac x2\right\rfloor\right\rfloor\,\mathrm dx.


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 12, 2016

f ( x ) = x 2 x 2 Note that x = x + { x } = x + { x } 2 x + { x } 2 \begin{aligned} f(x) & = \left \lfloor \color{#3D99F6}{x} - 2 \left \lfloor \frac {\color{#3D99F6}{x}}2 \right \rfloor \right \rfloor & \small \color{#3D99F6}{\text{Note that }x = \lfloor x \rfloor + \{x\}} \\ & = \left \lfloor \color{#3D99F6}{\lfloor x \rfloor + \{x\}} - 2 \left \lfloor \frac {\color{#3D99F6}{\lfloor x \rfloor + \{x\}}}2 \right \rfloor \right \rfloor \end{aligned}

f ( x ) = { x + { x } x = 0 if x is even x + { x } ( x 1 ) = 1 if x is odd \begin{aligned} \implies f(x) & = \begin{cases} \left \lfloor \lfloor x \rfloor + \{x\} - \lfloor x \rfloor \right \rfloor & = 0 & \text{if } \lfloor x \rfloor \text{ is even} \\ \left \lfloor \lfloor x \rfloor + \{x\} - (\lfloor x \rfloor - 1) \right \rfloor & = 1 & \text{if } \lfloor x \rfloor \text{ is odd} \end{cases} \end{aligned}

13 26 f ( x ) d x = 1 + 0 + 1 + 0 + . . . + 1 + 0 13 to 26 = 40 terms = 20 \begin{aligned} \implies \int_{-13}^{26} f(x) \ dx & = \underbrace{1+0+1+0+...+1+0}_{-13 \text{ to }26 \ = \ 40 \text{ terms}} = \boxed{20} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...