Practice your integration skill:D

Calculus Level 3

1 ln ( 1 + x 2 ) 1 + x 2 d x = ? \large \int_1^{\infty}{\dfrac{\ln{(1+x^{2}})}{1+x^{2}}dx}=?

Find your answer in closed form and give your answer to 3 decimal places.


The answer is 2.005.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 25, 2017

Relevant wiki: Catalan's constant

I = 1 ln ( 1 + x 2 ) 1 + x 2 d x Let x = tan θ d x = sec 2 θ d θ = π 4 π 2 ln ( sec 2 θ ) d θ = 2 π 4 π 2 ln ( cos θ ) d θ = 2 ( 0 π 2 ln ( cos θ ) d θ 0 π 4 ln ( cos θ ) d θ ) Using a b f ( x ) d x = a b f ( a + b x ) d x = 2 0 π 2 ln ( sin θ ) d θ + 2 0 π 4 ln ( cos θ ) d θ Let ϕ = θ 2 d ϕ = d θ 2 = 4 0 π 4 ln ( 2 sin ϕ cos ϕ ) d ϕ + 2 0 π 4 ln ( cos θ ) d θ Replace ϕ with θ = 4 0 π 4 ln ( 2 sin θ ) d θ 2 0 π 4 ln ( cos θ ) d θ Catalan’s constant G = 2 0 π 4 ln ( 2 sin x ) d x = 2 G 2 0 π 4 ln ( 2 cos θ ) d θ + 2 0 π 4 ln 2 d θ Catalan’s constant G = 2 0 π 4 ln ( 2 cos x ) d x = G + π 2 ln 2 G 0.91597 2.005 \begin{aligned} I & = \int_1^\infty \frac {\ln (1+x^2)}{1+x^2} dx & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \ d\theta \\ & = \int_\frac \pi 4^\frac \pi 2 \ln (\sec^2 \theta) \ d\theta \\ & = - 2 \int_\frac \pi 4^\frac \pi 2 \ln (\cos \theta) \ d\theta \\ & = - 2 \left({\color{#3D99F6}\int_0^\frac \pi 2 \ln (\cos \theta) \ d\theta} - \int_0^\frac \pi 4 \ln (\cos \theta) \ d\theta \right) & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = - 2{\color{#3D99F6}\int_0^\frac \pi 2 \ln (\sin \theta) \ d\theta} + 2 \int_0^\frac \pi 4 \ln (\cos \theta) \ d\theta & \small \color{#3D99F6} \text{Let } \phi = \frac \theta 2 \implies d \phi = \frac {d\theta}2 \\ & = - 4{\color{#3D99F6}\int_0^\frac \pi 4 \ln (2\sin \phi \cos \phi) \ d\phi} + 2 \int_0^\frac \pi 4 \ln (\cos \theta) \ d\theta & \small \color{#3D99F6} \text{Replace } \phi \text{ with } \theta \\ & = {\color{#3D99F6}- 4 \int_0^\frac \pi 4 \ln (2\sin \theta) \ d\theta} - 2 \int_0^\frac \pi 4 \ln (\cos \theta) \ d\theta & \small \color{#3D99F6} \text{Catalan's constant }G = - 2\int_0^\frac \pi 4 \ln(2\sin x)\ dx \\ & = {\color{#3D99F6}2G} - {\color{#D61F06} 2 \int_0^\frac \pi 4 \ln (2\cos \theta) \ d\theta} + 2 \int_0^\frac \pi 4 \ln 2 \ d\theta & \small \color{#D61F06} \text{Catalan's constant }G = 2\int_0^\frac \pi 4 \ln(2\cos x)\ dx \\ & = {\color{#3D99F6}G} + \frac \pi 2 \ln 2 & \small \color{#3D99F6} G \approx 0.91597 \\ & \approx \boxed{2.005} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...