Practise your integration

Calculus Level 3

Evaluate 0 π 4 cos 3 ( x ) + sin ( x ) cos 2 ( x ) d x \large \int_{0}^{\frac{\pi}{4}} \frac{\cos^3(x)+\sin(x)}{\cos^2(x)}dx


The answer is 1.121320343559643.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

0 π 4 cos 3 x + sin x cos 2 x d x = 0 π 4 ( cos x + tan x sec x ) d x = sin x + sec x 0 π 4 = 1 2 + 2 0 1 1.12 \begin{aligned} \int_0^\frac \pi 4 \frac {\cos^3 x + \sin x}{\cos^2 x} dx & = \int_0^\frac \pi 4 \left(\cos x + \tan x \sec x \right) dx \\ & = \sin x + \sec x \ \bigg|_0^\frac \pi 4 \\ & = \frac 1{\sqrt 2} + \sqrt 2 - 0 - 1 \\ & \approx \boxed{1.12} \end{aligned}

James Watson
Sep 5, 2020

0 π 4 cos 3 ( x ) + sin ( x ) cos 2 ( x ) d x = 0 π 4 cos 3 ( x ) cos 2 ( x ) + sin ( x ) cos 2 ( x ) d x = 0 π 4 cos 3 ( x ) cos 2 ( x ) d x + 0 π 4 sin ( x ) cos 2 ( x ) d x = 0 π 4 cos ( x ) d x + 0 π 4 sin ( x ) cos 2 ( x ) d x = sin ( x ) 0 π 4 + 0 π 4 ( sin ( x ) ) cos 2 ( x ) d x \begin{aligned} \int_{0}^{\frac{\pi}{4}} \frac{\cos^3(x)+\sin(x)}{\cos^2(x)}dx &= \int_{0}^{\frac{\pi}{4}} \frac{\cos^3(x)}{\cos^2(x)}+\frac{\sin(x)}{\cos^2(x)}dx \\ &= \int_{0}^{\frac{\pi}{4}} \frac{\cos^3(x)}{\cos^2(x)}dx + \int_{0}^{\frac{\pi}{4}}\frac{\sin(x)}{\cos^2(x)}dx \\ &= \int_{0}^{\frac{\pi}{4}} \cos(x)dx + \int_{0}^{\frac{\pi}{4}}\frac{\sin(x)}{\cos^2(x)}dx \\ &= \sin(x)\bigg|_{0}^{\frac{\pi}{4}} + \int_{0}^{\frac{\pi}{4}}\frac{-(-\sin(x))}{\cos^2(x)}dx \end{aligned} We can let u = cos ( x ) \blue{u = \cos(x)} and d u = sin ( x ) d x \orange{du = -\sin(x)dx} . Remember that as x 0 , u 1 x \to 0, u \to 1 and as x π 4 , u 1 2 x \to \frac{\pi}{4}, u \to \frac{1}{\sqrt{2}} : sin ( x ) 0 π 4 + 0 π 4 ( sin ( x ) ) cos 2 ( x ) d x sin ( π 4 ) sin ( 0 ) + u = 1 u = 1 2 1 u 2 d u = 1 2 + 1 u 1 1 2 = 1 2 + 2 1 = 3 2 2 = 1.121320343559643 \begin{aligned} \sin(x)\bigg|_{0}^{\frac{\pi}{4}} + \int_{0}^{\frac{\pi}{4}}\frac{-(\orange{-\sin(x)})}{\blue{\cos^2(x)}}\orange{dx} \implies \sin\left(\frac{\pi}{4}\right) - \sin(0) + \int_{u=1}^{u=\frac{1}{\sqrt{2}}}\frac{-\orange{1}}{\blue{u^2}}\orange{du} &= \frac{1}{\sqrt{2}} + \frac{1}{u} \bigg|_{1}^{\frac{1}{\sqrt{2}}} \\ &= \frac{1}{\sqrt{2}} + \sqrt{2} - 1 \\ &= \green{\boxed{\frac{3-\sqrt{2}}{\sqrt{2}}}} = \green{\boxed{1.121320343559643\dots}} \end{aligned}

Very good pun for the title!

Yajat Shamji - 9 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...