Praise the king

Calculus Level 3

Let r r be a real positive number. Then if

0 π / 2 1 1 + tan r ( x ) d x = A π + B ln π ( r ) , \int_{0}^{\pi / 2} \frac{1}{1 + \tan^r(x)} dx = A \pi + B \ln^{\pi}(r),

where A A and B B are the lowest possible non-negative rational numbers, find A + B . A + B.


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 π 2 1 1 + tan r x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 ( 1 1 + tan r x + 1 1 + tan r ( π 2 x ) ) d x = 1 2 0 π 2 ( 1 1 + tan r x + 1 1 + cot r x ) d x = 1 2 0 π 2 ( 1 1 + tan r x + 1 1 + 1 tan r x ) d x = 1 2 0 π 2 ( 1 1 + tan r x + tan r x tan r x + 1 ) d x = 1 2 0 π 2 d x = π 4 \begin{aligned} I & = \int_0^\frac \pi 2 \frac 1{1+\tan^r x} dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac 1{1+\tan^r x} + \frac 1{1+\tan^r \left(\frac \pi 2-x\right)} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac 1{1+\tan^r x} + \frac 1{1+\cot^r x} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac 1{1+\tan^r x} + \frac 1{1+\frac 1{\tan^r x}} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac 1{1+\tan^r x} + \frac {\tan^r x}{\tan^r x +1} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 dx = \frac \pi 4 \end{aligned}

Therefore, A + B = 1 4 + 0 = 0.25 A+B = \frac 14 + 0 = \boxed{0.25} .

Naren Bhandari
Feb 6, 2019

let I ( r ) = 0 1 2 π 1 1 + tan r x d x = 0 1 2 π cos r x cos r x + sin r x d x I(r) = \int_{0}^{\frac{1}{2}\pi} \dfrac{1}{1+\tan ^r x}\,dx=\int_{0}^{\frac{1}{2}\pi} \dfrac{\cos^r x }{\cos^r x +\sin^r x}\,dx Using the relation a b f ( x ) d x = a b f ( a + b x ) d x \int_{a}^{b} f(x) \,dx=\int_{a}^{b} f(a+b-x)\,dx we can deduce the following 0 1 2 π sin r x cos r x + sin r x d x \int_{0}^{\frac{1}{2}\pi} \dfrac{\sin^r x }{\cos^r x +\sin^r x}\,dx we have 2 I ( r ) = 0 1 2 π ( cos r x cos r x + sin r x + sin r x cos r x + sin r x ) d x = π 2 I ( r ) = π 4 2I(r) =\int_{0}^{\frac{1}{2}\pi} \left(\dfrac{\cos^r x }{\cos^r x+\sin^r x}+\dfrac{\sin^r x }{\cos^r x +\sin^r x} \right)\,dx = \dfrac{\pi}{2}\implies I(r) =\dfrac{\pi}{4} so the required answer is 1 4 + 0 = 0.25 \frac{1}{4}+0=0.25 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...