A geometry problem by Ralph Macarasig

Geometry Level 3

Given that tan θ + cot θ = 4 \tan \theta + \cot \theta = 4 , find the exact value of sec 2 θ + csc 2 θ 1 2 sec θ csc θ \sqrt{\sec^2 \theta + \csc^2 \theta - \dfrac12 \sec \theta \csc \theta} .

Give your answer to 3 decimal places.


The answer is 3.742.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ralph Macarasig
Sep 11, 2016

From sin 2 + cos 2 = 1 \sin^2 + \cos^2 = 1 , we know that sec 2 = tan 2 + 1 \sec^2 = \tan^2 + 1 and csc 2 = cot 2 + 1 \csc^2 = \cot^2 + 1

Then,

sec 2 θ + csc 2 θ 1 2 sec θ csc θ \sqrt{\sec^2 \theta + \csc^2 \theta - \dfrac12 \sec \theta \csc \theta}

= tan 2 θ + 1 + cot 2 θ + 1 1 2 ( tan 2 θ + 1 ) ( cot 2 θ + 1 ) = \sqrt{\tan^2 \theta+ 1 + \cot^2 \theta + 1 - \frac{1}{2}\sqrt{(\tan^2 \theta + 1)(\cot^2 \theta + 1)} }

= tan 2 θ + cot 2 θ + 2 1 2 tan 2 θ cot 2 θ + tan 2 θ + cot 2 θ + 1 = \sqrt{\tan^2 \theta + \cot^2 \theta + 2 - \frac{1}{2}\sqrt{\tan^2 \theta\cot^2 \theta + \tan^2 \theta + \cot^2 \theta + 1} }

= tan 2 θ + cot 2 θ + 2 1 2 tan 2 θ + cot 2 θ + 2 = \sqrt{\tan^2 \theta + \cot^2 \theta + 2 - \frac{1}{2}\sqrt{\tan^2 \theta + \cot^2 \theta + 2} }

From tan θ + cot θ = 4 \tan \theta + \cot \theta = 4 , squaring both sides,

tan 2 θ + 2 tan θ cot θ + cot 2 θ = 16 \tan^2 \theta + 2\tan \theta \cot \theta + \cot^2 \theta = 16

tan 2 θ + cot 2 θ = 14 \tan^2 \theta + \cot^2 \theta = 14

Therefore,

tan 2 θ + cot 2 θ + 2 1 2 tan 2 θ + cot 2 θ + 2 \sqrt{\tan^2 \theta + \cot^2 \theta + 2 - \frac{1}{2}\sqrt{\tan^2 \theta + \cot^2 \theta + 2} }

= 14 + 2 1 2 14 + 2 = \sqrt{14 + 2 - \frac{1}{2}\sqrt{14 + 2}}

= 16 1 2 16 =\sqrt{16 - \frac{1}{2}\sqrt{16}}

= 14 3.742 = \sqrt{14} \approx\boxed{3.742}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...