Pre RMO

Geometry Level 4

In the figure below,

the smaller circle touches the bigger circle at P P . The centre of the bigger circle is O O . Let X Y XY be the diameter of the bigger circle which is also tangent to smaller circle. Let P Y PY intersect the smaller circle at Z Z . If Y Z = 2 P Z YZ = 2PZ , find the magnitue of angle P Y X PYX in degrees.


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the smaller circle has center O O' and let that circle be tangent to X Y XY at a point M M .

Const:- Join O O OO' , O M O'M and O Z . . O'Z..

Clearly, O Z P = O P Z = O P Y = O Y P \angle O'ZP = \angle O'PZ = \angle OPY =\angle OYP .

=> O Z P = O Y P \angle O'ZP = \angle OYP

=> O Z O Y O'Z || OY

=> O P O O = P Z Y Z = 1 2 \dfrac{O'P}{O'O} = \dfrac{PZ}{YZ} = \dfrac{1}{2}

=> O M O O = 1 2 \dfrac{O'M}{O'O} = \dfrac{1}{2}

=> O O M = 3 0 \angle O'OM = 30^{\circ}

=> P Y X = ( O O M / 2 ) = 1 5 \angle PYX = (\angle O'OM /2) = 15^{\circ}

K.I.P.K.I.G

How can you draw these figures?

Jack Lupino - 3 years, 10 months ago

Log in to reply

Search Geogebra.

Vishwash Kumar ΓΞΩ - 3 years, 10 months ago

But how do we say that O , O prime and P are co-linear?

Suven Jagtiani - 2 years, 9 months ago
Priyanshu Mishra
Jan 22, 2016

Thanks NIRANJAN for the solution but I cannot understand your images. They seem like cartoon pictures.

I used trigonometry.

Kushagra Sahni - 5 years, 4 months ago

They are indeed cartoon.But why would he post cartoons in the solution section?

asad bhai - 5 years, 4 months ago

They are a sequel for Tom and Jerry. :)

Vishwash Kumar ΓΞΩ - 4 years, 2 months ago

F i g . I V : L e t Y P = 6 n . F i g . I I : Let Q be the center and r the radius of the small circle, R radius of the big circle. The point of tangency to YX is C. Small circle cut OP at D. F i g . I I I : O B , D Z , a n d Q A a r e s o n Y P a n d a l l p a r a l l e l . G i v e n Y Z = 2 3 Y P = 4 n , a l s o Y B t o c h o r d Y P Y B = Y P 2 = 3 n , Y B t o c h o r d Y P B Z = n . G i v e n Z P = 1 3 Y P = 2 n . B u t Q Z i s c h o r d b i s e c t o r . S o Z A = A P = n . i n Δ P O B , A , Z , B t r i s e c t s B P . Q A D Z O B , , Q , D , O , a l s o t r i s e c t s O P . O D = r . B u t O D = R 2 r A L S O . R 2 r = r R = 3 r . F i g . I : i n r t . e d Δ C O Q , h y p o t i n o u s O Q = 2 l e g C Q . C O Q = 3 0 o a t t h e c e n t e r O . o n t h e c i r c u m f e r a n c e X Y P = 1 2 30 = 1 5 o Fig~. IV:- ~~Let ~YP ~ = ~6n.\\ Fig. ~II:- ~~\text{Let Q be the center and r the radius of the small circle, R radius of the big circle.}\\ \text{The point of tangency to YX is C. Small circle cut OP at D. }\\ Fig. ~III:- ~~OB, ~DZ, ~and ~ QA ~are \bot s ~on ~YP ~ and ~\therefore ~all ~ parallel. \color{#3D99F6}{*}\\ Given~YZ=\dfrac 2 3 *YP=4n, ~also ~YB~\bot ~to ~chord ~YP~\implies~YB=\dfrac {YP} 2=3n, YB~\bot ~to ~chord ~YP~\implies ~BZ=n.\\ Given~ZP=\dfrac 1 3 *YP=2n. ~~But ~QZ ~is ~chord ~bisector.~ So ~ZA=AP=n.\\ \therefore~in ~\Delta ~POB, A, ~Z, ~B ~trisects ~BP.\\ QA | | DZ | | OB, \color{#3D99F6}{*},~ ~\implies ~Q,~D,~O, ~also~trisects ~OP.\\ \therefore ~OD=r.~ But ~OD=R - 2r ~ALSO. ~~~~~\therefore ~R-2r=r ~ \implies~ R=3r. \\ Fig. ~I:-\therefore ~in ~rt. \angle ed \Delta ~COQ, ~hypotinous ~OQ=2*legCQ.\\ \implies~ \angle~ COQ=30^o~ at~ the~ center ~ O.\\ \therefore ~on ~ the~circumferance ~\angle XYP=\dfrac 1 2*30=\Large ~~~\color{#D61F06}{15^o}

omg those drawings

Valentin Duringer - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...