Precise Free Fall

Assume that Earth is a perfect sphere with radius R . R. Let T = f ( h ) T=f(h) be the time an object takes to fall to the ground from rest from a height of h h above the ground and T 0 = 2 h g . T_0=\sqrt\frac {2h}g.

Find lim h 0 [ 5 R 6 h ( R h ) 2 ( T T 0 1 ) ] 1 . \displaystyle\lim_{h\to 0}\left[\frac{5R}{6h}-\left(\frac Rh\right)^2\left(\frac T{T_0}-1\right)\right]^{-1}.

Note: Consider only gravity, and forget about atmospheric effects, air resistance, etc.


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Aug 15, 2019

If r r is the distance of the object from the centre of the earth, then d d r ( 1 2 r ˙ 2 ) = r ¨ = g R 2 r 2 \frac{d}{dr}\big(\tfrac12\dot{r}^2\big) \; = \; \ddot{r} \; = \; -\frac{gR^2}{r^2} and hence 1 2 r ˙ 2 = g R 2 r g R 2 R + h = g R 2 ( R + h r ) ( R + h ) r \tfrac12\dot{r}^2 \; = \; \frac{gR^2}{r} - \frac{gR^2}{R+h} \; = \; \frac{gR^2(R+h-r)}{(R+h)r} so that the time T T to hit the ground is (using the substitution r = ( R + h ) sin 2 θ r = (R+h)\sin^2\theta ) T = R R + h ( R + h ) r 2 g R 2 ( R + h r ) d r = R + h 2 g R 2 sin 1 R R + h 1 2 π tan θ 2 ( R + h ) sin θ cos θ d θ = ( R + h ) 3 2 2 g R 2 tan 1 R h 1 2 π ( 1 cos 2 θ ) d θ = ( R + h ) 3 2 2 g R 2 { 1 2 π tan 1 R h + R h R + h } = ( R + h ) 3 2 2 g R 2 { tan 1 h R + R h R + h } \begin{aligned} T & = \; \int_R^{R+h}\sqrt{\frac{(R+h)r}{2gR^2(R+h-r)}}\,dr \; = \; \sqrt{\frac{R+h}{2gR^2}}\int_{\sin^{-1}\sqrt{\frac{R}{R+h}}}^{\frac12\pi} \tan\theta\,2(R+h)\sin\theta\cos\theta\,d\theta \\ & = \; \frac{(R+h)^{\frac32}}{\sqrt{2gR^2}}\int_{\tan^{-1}\sqrt{\frac{R}{h}}}^{\frac12\pi}(1 - \cos2\theta)\,d\theta \; = \; \frac{(R+h)^{\frac32}}{\sqrt{2gR^2}}\left\{ \tfrac12\pi - \tan^{-1}\sqrt{\tfrac{R}{h}} + \frac{\sqrt{Rh}}{R+h}\right\} \; = \; \frac{(R+h)^{\frac32}}{\sqrt{2gR^2}}\left\{ \tan^{-1}\sqrt{\tfrac{h}{R}} + \frac{\sqrt{Rh}}{R+h}\right\} \end{aligned} Putting k = h R k = \tfrac{h}{R} we see that T T 0 = 1 2 ( 1 + k ) 3 2 { 1 k tan 1 k + 1 1 + k } \frac{T}{T_0} \; = \; \tfrac12(1+k)^{\frac32}\left\{ \frac{1}{\sqrt{k}}\tan^{-1}\sqrt{k} + \frac{1}{1+k}\right\} Writing down the Maclaurin expansion of T T 0 \tfrac{T}{T_0} , we see that T T 0 = 1 2 ( 1 + 3 2 k + 3 8 k 2 + O ( k 3 ) ) { ( 1 1 3 k + 1 5 k 2 + O ( k 3 ) ) + ( 1 k + k 2 + O ( k 3 ) ) } = 1 2 ( 1 + 3 2 k + 3 8 k 2 + O ( k 3 ) ) ( 2 4 3 k + 6 5 k 2 + O ( k 3 ) ) = 1 + 5 6 k 1 40 k 2 + O ( k 3 ) \begin{aligned} \frac{T}{T_0} & = \; \tfrac12\left(1 + \tfrac32k + \tfrac38k^2 + O(k^3)\right)\big\{ \left(1 - \tfrac13k + \tfrac15k^2 + O(k^3)\right) + \left(1 - k + k^2 + O(k^3)\right)\big\} \\ & = \; \tfrac12\left(1 + \tfrac32k + \tfrac38k^2 + O(k^3)\right)\left(2 - \tfrac43k + \tfrac65k^2 + O(k^3)\right) \\ & = \; 1 + \tfrac56k - \tfrac{1}{40}k^2 + O(k^3) \end{aligned} and hence 5 6 k 1 k 2 [ T T 0 1 ] = 1 40 + O ( k ) \frac{5}{6k} - \frac{1}{k^2}\left[\frac{T}{T_0} - 1\right] \; = \; \frac{1}{40} + O(k) where all these asymptotic statements as as k 0 k \to 0 . Thus we deduce that lim h t o 0 [ 5 R 6 h R 2 h 2 ( T T 0 1 ) ] = 1 40 \lim_{h to 0} \left[\frac{5R}{6h} - \frac{R^2}{h^2}\left(\frac{T}{T_0} - 1\right)\right] \; = \; \frac{1}{40} which makes the answer 40 \boxed{40} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...