Preparation for the Calc BC exam

Calculus Level 3

1 z 2 d z 0 1 ln y d y 1 cos 2 ( π x ) d x \large \displaystyle \int \limits_{ \large \int_{1}^{\infty} z^{-2} \, dz }^{ \large \int_{0}^{1} \ln y \, dy } \sqrt{1-\cos^{2} (\pi x)} \, dx .

4 π \dfrac{4}{\pi} The integral is of an indeterminate form. 4 π - \dfrac{4}{\pi} 0 + + \infty - \infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
May 3, 2016

Upper limit: [ y ( ln y 1 ) ] 0 1 = 1 [y(\ln y-1)]_0^1=-1 .

(For substituting 0 use Lhopital( since form is 0/0) i.e lim y 0 ln y 1 1 / y = lim y 0 1 / y 1 / y 2 = 0 \small{\displaystyle\lim_{y\to 0}\dfrac{\ln y-1}{1/y}=\displaystyle\lim_{y\to 0}\dfrac{1/y}{-1/y^2}=0} .)

Lower limit: [ 1 / z ] 1 = 1 [-1/z]_1^{^{\infty}}=1 .

Also using 1 cos 2 A = sin A \sqrt{1-\cos^2 A}=|\sin A| integration is:

1 1 sin π x = 2 0 1 sin π x = 2 π [ c o s π x ] 0 1 = 4 π -\int_{-1}^1|\sin \pi x|=-2\int_0^1\sin \pi x=\frac{2}{\pi}[cos \pi x]_0^1=\dfrac{-4}{\pi}

You should show how you get the upper limit. You do need L'Hopital's rule for that because otherwise, what's 0 ln 0 0 \ln 0 ?

Otherwise, great solution!

Hobart Pao - 5 years, 1 month ago

Log in to reply

I've added it

Rishabh Jain - 5 years, 1 month ago

Log in to reply

Thanks! Upvoted.

Hobart Pao - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...