Pretty Nice Limit

Calculus Level 3

lim n ( n ( 4 n 1 ) 2 r = 3 ( 1 ) r 1 r ) 2 n \lim_{n\to\infty} \left(n(\sqrt[n]{4} -1) - 2\sum_{r=3}^{\infty}\frac{(-1)^{r-1}}{r}\right)^{2n}

If the limit above is A A , find 100 A \lfloor{100A}\rfloor

Notation: \lfloor \cdot \rfloor denotes the floor function .

This problem is taken from Romanian Mathematical Magazine.


The answer is 683.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First we solve the series :- r = 3 ( 1 ) r 1 r = ln ( 2 ) 1 2 \displaystyle \sum_{r=3}^{\infty}\frac{(-1)^{r-1}}{r} = \ln(2) - \frac{1}{2} This can be done using the taylor series expansion for ln ( 1 + x ) \large \ln(1+x)

ln ( 1 + x ) = r = 1 ( 1 ) r 1 r \displaystyle \ln(1+x) = \sum_{r=1}^{\infty}\frac{(-1)^{r-1}}{r}

So we have : - lim n ( n ( 4 n 1 ) ln ( 4 ) + 1 ) 2 n \displaystyle \lim_{n\to\infty} \left(n(\sqrt[n]{4} -1) - \ln(4) + 1 \right)^{2n}

Now it is easy to see that it is 1 1^{\infty} form . As lim n ( n ( 4 n 1 ) = lim n ( 4 n 1 ) 1 n = lim x 0 + ( 4 x 1 ) x = ln ( 4 ) \displaystyle \lim_{n\to\infty}(n(\sqrt[n]{4} -1) = \lim_{n\to\infty}\frac{(\sqrt[n]{4} -1)}{\frac{1}{n}} = \lim_{x\to 0^{+}}\frac{(4^{x}-1)}{x} = \ln(4)

So we have e lim n ( n ( 4 n 1 ) ln ( 4 ) ) 2 n \huge e^{\lim_{n\to\infty} \left(n(\sqrt[n]{4} -1) - \ln(4)\right){2n}}

Now making a substitution of x = 1 n \displaystyle x = \frac{1}{n} we have :-

e lim x 0 + ( 4 x 1 x ln ( 4 ) ) 2 x \huge e^{\lim_{x\to 0^{+}}\left(\frac{4^{x}-1}{x} -\ln(4)\right)\frac{2}{x}}

Now we know 4 = e ln ( 4 ) \large 4 = e^{\ln(4)} So 4 x = e x ln ( 4 ) \large 4^{x} = e^{x\ln(4)}

Now we know the taylor series expansion for e z = r = 0 z r r ! \large e^{z} = \sum_{r=0}^{\infty} \frac{z^{r}}{r!}

We have e lim x 0 + ( ( 1 + x ln ( 4 ) 1 ! + ( x ln ( 4 ) ) 2 2 ! + O ( ( x ln ( 4 ) ) 3 ) ) 1 x ln ( 4 ) ) 2 x \huge e^{\lim_{x\to 0^{+}} \left(\frac{(1+\frac{x\ln(4)}{1!} + \frac{(x\ln(4))^{2}}{2!} + O((x\ln(4))^{3}))-1}{x} - \ln(4)\right)\frac{2}{x}}

= e lim x 0 + ( ( x ln ( 4 ) 1 ! + ( x ln ( 4 ) ) 2 2 ! + O ( ( x ln ( 4 ) ) 3 ) ) x ln ( 4 ) ) 2 x \huge = e^{\lim_{x\to 0^{+}} \left(\frac{(\frac{x\ln(4)}{1!} + \frac{(x\ln(4))^{2}}{2!} + O((x\ln(4))^{3}))}{x} - \ln(4)\right) \frac{2}{x}}

= e lim x 0 + ( x ( ln ( 4 ) ) 2 2 ! ) 2 x \huge = e^{\lim_{x\to 0^{+}} (\frac{x(\ln(4))^{2}}{2!})\frac{2}{x}}

= e ( ln ( 4 ) ) 2 \huge = e^{(\ln(4))^{2}}

= 4 ln ( 4 ) \large = 4^{\ln(4)}

Here O ( ) O(\cdot) denotes the big O notation

You should better mention the source as well.

Naren Bhandari - 1 year ago

Log in to reply

My friend sent it to me as a screenshot...I have to ask him.

Log in to reply

It belongs to RMM . I will post the general version of mine.

Naren Bhandari - 1 year ago
Chew-Seong Cheong
May 14, 2020

L = lim n ( n ( 4 n 1 ) 2 r = 3 ( 1 ) r 1 r ) 2 n = lim n ( 4 n 1 1 n 2 ( r = 1 ( 1 ) r 1 r 1 + 1 2 ) ) 2 n A 0/0 case, L’H o ˆ pital’s rule applies = lim n ( ln 4 ln 4 + 1 ) 2 n Differentiate up and down w.r.t. n \begin{aligned} L & = \lim_{n \to \infty} \left(n \left(\sqrt[n]4-1\right) - 2\sum_{r=3}^\infty \frac {(-1)^{r-1}}r \right)^{2n} \\ & = \lim_{n \to \infty} \left(\blue{\frac {\sqrt[n]4-1}{\frac 1n}} - 2 \left(\sum_{r=1}^\infty \frac {(-1)^{r-1}}r -1 + \frac 12 \right)\right)^{2n} & \small \blue{\text{A 0/0 case, L'Hôpital's rule applies}} \\ & = \lim_{n \to \infty} \left(\blue{\ln 4} - \ln 4 + 1 \right)^{2n} & \small \blue{\text{Differentiate up and down w.r.t. }n} \end{aligned}

This means that L L is of the form 1 1^\infty , and we can use the 1 1^\infty -limit method and we can write lim x f ( x ) g ( x ) = e lim x g ( x ) ( f ( x ) 1 ) \displaystyle \lim_{x \to \infty} f(x)^{g(x)} = e^{\lim_{x \to \infty} g(x)(f(x) - 1)} .

L = exp ( lim n 2 n ( n ( 4 n 1 ) ln 4 ) ) where exp ( x ) = e x = exp ( lim n 2 n ( 4 n 1 ) 2 ln 4 1 n ) A 0/0 case, L’H o ˆ pital’s rule applies = exp ( lim n 2 ( 4 1 n 1 ) 2 n ln 4 4 1 n 1 n 2 ) A 0/0 case again after differentiation = exp ( lim n 2 n 2 ln 4 4 1 n + 2 n 2 ln 4 4 1 n + 2 n 3 ln 2 4 4 1 n 2 n 3 ) Differentiate up and down w.r.t. n = exp ( lim n ln 2 4 4 1 n ) = e ln 2 4 \begin{aligned} L & = \exp \left(\lim_{n \to \infty} 2n\left(n\left(\sqrt[n]4-1\right) - \ln 4 \right) \right) & \small \blue{\text{where }\exp(x) = e^x} \\ & = \exp \left(\lim_{n \to \infty} \frac {2n\left(\sqrt[n]4-1\right) - 2 \ln 4}{\frac 1n} \right) & \small \blue{\text{A 0/0 case, L'Hôpital's rule applies}} \\ & = \exp \left(\lim_{n \to \infty} \frac {2\left(4^\frac 1n-1\right)-\frac 2n \ln 4 \cdot 4^\frac 1n}{- \frac 1{n^2}}\right) & \small \blue{\text{A 0/0 case again after differentiation}} \\ & = \exp \left(\lim_{n \to \infty} \frac {-\frac 2{n^2} \ln 4 \cdot 4^\frac 1n + \frac 2{n^2} \ln 4 \cdot 4^\frac 1n + \frac 2{n^3} \ln^2 4 \cdot 4^\frac 1n}{\frac 2{n^3}}\right) & \small \blue{\text{Differentiate up and down w.r.t. }n} \\ & = \exp \left(\lim_{n \to \infty} \ln^2 4 \cdot 4^\frac 1n \right) = e^{\ln^2 4} \end{aligned}

Therefore 100 A = 100 e ln 2 4 = 683 \lfloor 100A \rfloor = \lfloor 100 e^{\ln^2 4} \rfloor = \boxed{683} .


Reference: L'Hôpital's rule

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...