A simple problem in a package

Calculus Level 3

Let x 1 , x 2 , x 3 , x_1, x_2, x_3, \ldots be roots of the function f ( x ) = sin ( π ln ( x ) ln 3 ) f(x) = \sin{\left( \dfrac{\pi \ln{(x)}}{\ln3} \right)} where 1 < x 1 < x 2 < x 3 < 1 < x_1 < x_2 < x_3 < \cdots .

What is the value of n = 1 1 x n ? \sum_{n=1}^{\infty} \dfrac{1}{x_n} \quad ?

π 6 \frac{\pi}{6} 1 2 \frac{1}{2} ln 8 5 \ln{\frac{8}{5}} π 2 20 \frac{\pi^2}{20}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First Last
Sep 16, 2016

In order for sin ( π ln x ln 3 ) \displaystyle\sin(\frac{\pi\ln{x}}{\ln{3}}) to equal 0, π ln x ln 3 \displaystyle\frac{\pi\ln{x}}{\ln{3}} must equal k π k\pi , where k is an integer.

π ln x ln 3 = k π \displaystyle\frac{\pi \ln{x}}{\ln{3}} = k\pi\quad so the roots greater than 1 are x n = 3 n , n > 0 \displaystyle x_n = 3^n,\quad n > 0

In general, n = 1 1 r n = 1 1 1 r 1 \displaystyle\sum_{n=1}^{\infty}\frac{1}{r^n} = \frac{1}{1-\frac{1}{r}}-1 so

n = 1 1 3 n = 1 2 \displaystyle\sum_{n=1}^{\infty}\frac{1}{3^n} = \boxed{\frac{1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...