Primary consecutive addition (Part 7)

Algebra Level 4

Evaluate:

1 2 × 3 + 2 3 × 4 + 3 4 × 5 + + 49 50 × 51 + 50 51 × 52 \large{\frac{1}{2\times 3} +\frac{2}{3\times4}+\frac{3}{4\times5}+\ldots+\frac{49}{50\times 51}+\frac{50}{51\times52}}

Details:

  • Answer the expression above in 3 3 decimal places.

  • The fraction terms are in a consecutive order: 1 , 2 , 3 , 4 , , 51 , 52 1, 2, 3, 4, \ldots, 51, 52

  • More problems here


The answer is 2.557.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Eamon Gupta
Aug 15, 2015

The summation can be expressed as n = 1 50 n ( n + 1 ) ( n + 2 ) = n = 1 50 n n + 1 n n + 2 \sum_{n=1}^{50}\frac{n}{(n+1)(n+2)} = \sum_{n=1}^{50}\frac{n}{n+1}-\frac{n}{n+2}

Expanding this we notice that the harmonic series emerges: 1 2 1 3 + 2 3 1 3 2 4 + 3 4 1 4 48 50 + 49 50 1 50 49 51 + 50 51 1 51 50 52 \Large{\frac{1}{2} \underbrace{\color{#D61F06}{- \frac{1}{3} + \frac{2}{3}}}_{\frac{1}{3}} \underbrace{\color{#3D99F6}{ - \frac{2}{4} + \frac{3}{4}}}_{\frac{1}{4}} \cdots \underbrace{\color{#20A900}{ - \frac{48}{50} + \frac{49}{50}}}_{\frac{1}{50}} \underbrace{\color{#EC7300}{ - \frac{49}{51} + \frac{50}{51}}}_{\frac{1}{51}} - \frac{50}{52}}

= 1 2 + 1 3 + 1 4 + 1 5 + 1 50 + 1 51 50 52 \Large{=\color{#D61F06}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5} \cdots +\frac{1}{50}+\frac{1}{51}} - \frac{50}{52}}

\therefore The summation is equal to the sum of the harmonic series up to the 51st term minus 1 minus 50 52 \frac{50}{52} .

Note that an approximation for the sum of the harmonic series up to the nth term is ln ( n ) + γ + 1 2 n 1 12 n 2 \large{\ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^{2}}} where γ \gamma is the Euler-Mascheroni constant and is approximated by π 2 e \large{\frac{\pi}{2e}} .

So our final step is:

ln ( 51 ) + γ + 1 102 1 12 × 5 1 2 1 50 52 2.557 \large{\ln(51) + \gamma + \frac{1}{102} - \frac{1}{12\times 51^{2}} - 1 - \frac{50}{52} \approx 2.557}

Moderator note:

Good way to approximate the sum of the Harmonic series!

T h e s e r i e s i s 1 50 n ( n + 1 ) ( n + 2 ) = 1 50 2 n + 2 1 50 1 n + 1 = 2 1 50 1 n + 2 1 2 2 50 1 n + 1 = 2 1 49 1 n + 2 + 2 52 1 2 1 49 1 n + 2 = 1 49 1 n + 2 + 2 52 1 2 = 1 26 1 2 + 3 51 1 n = 2.55727 The~series~is~~\sum_1^{50}\dfrac n {(n+1)*(n+2)}\\ =\sum_1^{50}\dfrac 2 {n+2} - \sum_1^{50}\dfrac 1 {n+1}\\ =2*\sum_1^{50}\dfrac 1 {n+2} - \dfrac 1 2 -\sum_2^{50}\dfrac 1 {n+1}\\ =2*\sum_1^{49}\dfrac 1 {n+2}+\dfrac 2{52}- \dfrac 1 2 -\sum_1^{49}\dfrac 1{n+2}\\ =\sum_1^{49}\dfrac 1 {n+2}+\dfrac 2{52} - \dfrac 1 2\\ =\dfrac 1{26} - \dfrac 1 2 + \sum_3^{51}\dfrac 1 n=\Large ~~~~\color{#D61F06}{ 2.55727}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...