Prime Again?

{ x 2 + x y + y 2 = 19 y 2 + y z + z 2 = 67 z 2 + z x + x 2 = 79 \large{\begin{cases} x^2 + xy + y^2 &=& 19 \\ y^2 + yz + z^2 &=& 67 \\ z^2 + zx + x^2 &=& 79 \\ \end{cases} }

Considering the system of Diophantine equations above, what is the value of x y + y z + z x xy + yz +zx ?


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

From the first equation, x 2 + x y + y 2 = 19 x^2 + xy + y^2 = 19 , when we solve for x in terms of y, it can be calculated with a quadratic formula:

x = y ± y 2 4 ( y 2 19 ) 2 \dfrac{-y\pm \sqrt{y^2 - 4(y^2 - 19)}}{2} = y ± 76 3 y 2 2 \dfrac{-y\pm \sqrt{76 - 3y^2 }}{2}

Considering the root of the quadratic discriminant, 76 3 y 2 76 - 3y^2 > 0. Hence, y y \in [-5 , 5].

Since this system is of Diophantine equations, the solutions of all variables are integers. Therefore, when testing for y-integers, we will get:

y = -5 \to x = 5 ± 76 3 ( 5 2 ) 2 \dfrac{5\pm \sqrt{76 - 3(5^2)}}{2} = 5 ± 1 2 \dfrac{5\pm 1}{2} = 2 or 3.

y = -4 \to x = 4 ± 76 3 ( 4 2 ) 2 \dfrac{4\pm \sqrt{76 - 3(4^2)}}{2} = 4 ± 28 2 \dfrac{4\pm \sqrt{28}}{2} (not integers)

y = -3 \to x = 3 ± 76 3 ( 3 2 ) 2 \dfrac{3\pm \sqrt{76 - 3(3^2)}}{2} = 3 ± 7 2 \dfrac{3\pm 7}{2} = -2 or 5.

y = -2 \to x = 2 ± 76 3 ( 2 2 ) 2 \dfrac{2\pm \sqrt{76 - 3(2^2)}}{2} = 2 ± 8 2 \dfrac{2\pm 8}{2} = -3 or 5.

y = -1 \to x = 1 ± 76 3 ( 1 2 ) 2 \dfrac{1\pm \sqrt{76 - 3(1^2)}}{2} = 1 ± 73 2 \dfrac{1\pm \sqrt{73}}{2} (not integers)

y = 0 \to x = 0 ± 76 3 ( 0 2 ) 2 \dfrac{0\pm \sqrt{76 - 3(0^2)}}{2} = 76 2 \dfrac{ \sqrt{76}}{2} (not integers)

y = 1 \to x = 1 ± 76 3 ( 1 2 ) 2 \dfrac{-1\pm \sqrt{76 - 3(1^2)}}{2} = 1 ± 73 2 \dfrac{-1\pm \sqrt{73}}{2} (not integers)

y = 2 \to x = 2 ± 76 3 ( 2 2 ) 2 \dfrac{-2\pm \sqrt{76 - 3(2^2)}}{2} = 2 ± 8 2 \dfrac{-2\pm 8}{2} = 3 or -5.

y = 3 \to x = 3 ± 76 3 ( 3 2 ) 2 \dfrac{-3\pm \sqrt{76 - 3(3^2)}}{2} = 3 ± 7 2 \dfrac{-3\pm 7}{2} = 2 or -5.

y = 4 \to x = 4 ± 76 3 ( 4 2 ) 2 \dfrac{-4\pm \sqrt{76 - 3(4^2)}}{2} = 4 ± 28 2 \dfrac{-4\pm \sqrt{28}}{2} (not integers)

y = 5 \to x = 5 ± 76 3 ( 5 2 ) 2 \dfrac{-5\pm \sqrt{76 - 3(5^2)}}{2} = 5 ± 1 2 \dfrac{-5\pm 1}{2} = -2 or -3.

As a result, the possible pairs of (x , y) include:

{(2 , -5), (2 , 3), (3 , -5), (3 , 2), (5 , -2), (5 , -3), (-2 , -3), (-2 , 5), (-3 , -2), (-3 , 5), (-5 , 2), (-5 , 3)}

Similarly, when we evaluate the second equation, the possible pairs of (y , z) include:

{(2 , 7), (2 , -9), (7 , 2), (7 , -9), (9 , -2), (9 , -7), (-2 , 9), (-2 , -7), (-7 , 9), (-7 , -2), (-9 , 2), (-9 , 7)}

Finally, for the third equation, the possible pairs of (z , x) include:

{(3 , 7), (3 , -10), (7 , 3), (7 , -10), (10 , -3), (10 , -7), (-3 , 10), (-3 , -7), (-7 , 10), (-7 , -3), (-10 , 7), (-10 , 3)}

Now the only applicable triples (x , y , z) corresponding to those integers include: (3 , 2 , 7) or (-3 , -2 , -7).

Either way, the value of x y + y z + z x xy + yz +zx = 6 + 14 + 21 = 41.

Note that ( 5 21 , 17 21 , 43 21 ) (\frac{5}{\sqrt{21}}, \frac{17}{\sqrt{21}}, -\frac{43}{\sqrt{21}}) and ( 5 21 , 17 21 , 43 21 ) ( -\frac{5}{\sqrt{21}}, -\frac{17}{\sqrt{21}}, \frac{43}{\sqrt{21}}) are also solutions, which lead to x y + x z + y z = 41 xy + xz + yz = -41 . The problem should say that only integer solutions are desired.

Jon Haussmann - 5 years, 5 months ago

Log in to reply

Sorry, I wrote Diophantine equations before. It was probably erased after edition.

Worranat Pakornrat - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...