is a power of a prime number. Find if .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
In polynomial notation ( 5 6 5 4 ) b = 5 × b 3 + 6 × b 2 + 5 × b + 4 = ( b + 1 ) ( 5 b 2 + b + 4 )
Let ( 5 6 5 4 ) b = n k where n is a prime number
⟹ b + 1 = n i , 5 b 2 + b + 4 = n j where i + j = k
Also b + 1 5 b 2 + b + 4 = n j − i ⟹ remainder=0.
But by remainder theorem the above equation gives a remainder 8 ( put b = − 1 ). To satisfy the above condition (remainder should be 0 ), 8 should be a multiple of b + 1 and b > 6 ⟹ b + 1 = 8