Prime factors.

21 C 1 + 5 . 21 C 5 + 9 . 21 C 9 + . . . + 17 . 21 C 17 + 21 . 21 C 21 = k ^{ 21}{ { C } }_{1} + 5. ^{ 21}{ { C } }_{5} + 9. ^{ 21}{ { C } }_{9} + ... + 17. ^{ 21}{ { C } }_{17} + 21. ^{ 21}{ { C } }_{21} = k . Then find the product of all prime factors of k k .


The answer is 3066.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By Binomial expansion,

( 1 + x ) 21 = 21 C 0 x 0 + 21 C 1 x + 21 C 2 x 2 + . . . + 21 C 20 x 20 + 21 C 21 x 21 (1+x)^{21} = ^{ 21 }{ { C } }_{0}{x}^{0} + ^{ 21}{ { C } }_{1}x + ^{ 21}{ { C } }_{2}{x}^{2} + ... + ^{ 21}{ { C } }_{20}{x}^{20} + ^{ 21}{ { C } }_{21}{x}^{21}

Now differentiate both sides w.r.t x x , then

21 ( 1 + x ) 20 = 21 C 1 + 2 . 21 C 2 x + . . . + 20 . 21 C 20 x 19 + 21 . 21 C 21 x 20 21(1+x)^{20} = ^{ 21}{ { C } }_{1} + 2.^{ 21}{ { C } }_{2}x + ... + 20.^{ 21}{ { C } }_{20}{x}^{19} + 21.^{ 21}{ { C } }_{21}{x}^{20}

Putting x = + 1 , 1 , i , i x = +1, -1, i, -i (where i i is 1 \sqrt{-1} ) separately to form four equations and adding them we would get.

21 × ( 2 20 + 0 + ( 1 + i ) 20 + ( 1 i ) 20 ) = 21 C 1 + 5 . 21 C 5 + 9 . 21 C 9 21\times ({2}^{20} + 0 + {(1+i)}^{20} + {(1-i)}^{20}) = ^{ 21}{ { C } }_{1} + 5. ^{ 21}{ { C } }_{5} + 9. ^{ 21}{ { C } }_{9} + . . . + + ... + 17 . 21 C 17 + 21 . 21 C 21 = k 17. ^{ 21}{ { C } }_{17} + 21. ^{ 21}{ { C } }_{21} = k

\implies k = 21 × ( 2 20 2 11 ) k = 21\times ({2}^{20} - {2}^{11})

\implies k = 2 11 × 3 × 7 2 × 73 k = {2}^{11}\times 3 \times {7}^{2}\times 73

Hence the required answer is 2 × 3 × 7 × 73 = 3066 2\times 3\times 7\times 73 = 3066 .

It is given that: k = 0 5 ( 4 k + 1 ) 21 C 4 k + 1 = k \displaystyle \sum _{k=0} ^5 {(4k+1)^{21}C_{4k+1}} = k

k = 0 5 ( 4 k + 1 ) 21 C 4 k + 1 = k = 0 5 ( 4 k + 1 ) 21 ! ( 4 k + 1 ) ! ( 20 4 k ) ! = k = 0 5 21 ( 20 ! ) 4 k ! ( 20 4 k ) ! \displaystyle \sum _{k=0} ^5 {(4k+1)^{21}C_{4k+1}} = \sum _{k=0} ^5 {\frac{(4k+1)21!}{(4k+1)!(20-4k)!}} = \sum _{k=0} ^5 { \frac {21(20!)} {4k!(20-4k)!}}

= 21 k = 0 5 20 C 4 k = 21 ( 20 C 0 + 20 C 4 + 20 C 8 + 20 C 12 + 20 C 16 + 20 C 20 \displaystyle = 21 \sum _{k=0} ^5 {^{20}C_{4k}} = 21(^{20} C _0 + ^{20} C _4 + ^{20} C _8 + ^{20} C _{12} + ^{20} C _{16} + ^{20} C _{20}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...