Prime Octet 2

A = 16 ! + 1 E = 16 ! + 5 B = 16 ! + 2 F = 16 ! + 6 C = 16 ! + 3 G = 16 ! + 7 D = 16 ! + 4 H = 16 ! + 8 \begin{array}{cc} \Large &\color{#D61F06}A \color{#333333} = 16! + 1 &&\color{teal}E \color{#333333} = 16! + 5 \\ \Large &\color{#EC7300}B \color{#333333} = 16! + 2 &&\color{#3D99F6}F \color{#333333} = 16! + 6 \\ \Large &\color{gold}C \color{#333333} = 16! + 3 &&\color{#BA33D6}G \color{#333333} = 16! + 7 \\ \Large &\color{#20A900}D \color{#333333} = 16! + 4 &&\color{#69047E}H \color{#333333} = 16! + 8 \end{array}

How many of the above eight numbers are prime?


Note: Calculators not allowed!


Inspiration - Prime Octet (Solve it first.)

0 1 2 3 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vu Vincent
Aug 4, 2017

It's evident that B H \color{#EC7300}B \color{#333333}\rightarrow \color{#69047E}H are not primes, because we can always factor out certain numbers i.e

B = 16 ! + 2 = 2 ( 3 4 . . . 15 16 + 1 ) \color{#EC7300}B \color{#333333} = 16! + 2 = 2( 3 \cdot 4 \cdot...\cdot 15 \cdot 16 +1)

C = 16 ! + 3 = 3 ( 2 4 . . . 15 16 + 1 ) \color{gold}C \color{#333333} = 16! + 3 = 3( 2 \cdot 4 \cdot...\cdot 15 \cdot 16 +1)

\vdots

H = 16 ! + 8 = 8 ( 2 3 . . . 7 9 . . . 15 16 + 1 ) \color{#69047E}H \color{#333333} = 16! + 8 = 8( 2 \cdot 3 \cdot ... \cdot 7 \cdot 9 \cdot ... \cdot 15 \cdot 16 +1)

A = 16 ! + 1 \color{#D61F06}A \color{#333333} = 16! + 1 is quite an exception. We can utilise Wilson's Theorem.

Wilson's Theorem states that

For a positive integer n > 1 n > 1 , if ( n 1 ) ! 1 ( m o d n ) , (n-1)!\equiv -1\pmod n, then n n is a prime.

We use n = 17 n = 17 which gives us:

( 16 ) ! 1 ( m o d 17 ) (16)! \equiv -1 \pmod {17}

This means that:

A = 16 ! + 1 \color{#D61F06}A \color{#333333} = 16! + 1 is divisible by 17 17

Therefore, A = 16 ! + 1 \color{#D61F06}A \color{#333333} = 16! + 1 is not a prime. Hence, all eight numbers above are not primes.

Prime Octet #1 originally included 8!+1 until we realized it required higher power machinery (like Wilson's) than we were going for.

Jason Dyer Staff - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...