Prime Powers

Find the last 5 digits of 2 2 + 3 3 + 5 5 + 7 7 + 1 1 11 2^{2}+3^{3}+5^{5}+7^{7}+11^{11} .


The answer is 97310.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Dec 23, 2016

2 2 = 4 3 3 = 27 5 5 = 3125 7 7 = 343 343 7 = 823 , 543 Sum = 826 , 699 \begin{aligned} 2^2 & = 4 \\ 3^3 & = 27 \\ 5^5 & = 3125 \\ 7^7 & = 343\cdot 343\cdot7 = 823,543 \\ \text{Sum } & = 826,699 \end{aligned}

Calculating last five digits of \text{ Calculating last five digits of } 1 1 11 11^{11}

1 1 11 = ( 11 7 ) + ( 11 8 ) + ( 11 9 ) + ( 11 10 ) + ( 11 11 ) Adding priority from right = 330 16 16 carry over to next column 5 55 5 carry over to next column 11 1 carry over to next column 1 last digit = 6 5 + 5 1 carry over to next column 5 + 1 1 1 = 7 0 6 1 1 \begin{aligned} 11^{11} & = \dbinom{11}{7}+\dbinom{11}{8}+\dbinom{11}{9}+\dbinom{11}{10}+\dbinom{11}{11} \quad \quad \small\color{#3D99F6}{\text{Adding priority from right}} \\ & = 330|\underbrace{16}_{\text{16 carry over to next column}}5|\underbrace{55}_{\text{5 carry over to next column}}|\underbrace{11}_{\text{1 carry over to next column}}|\underbrace{1}_{\text{last digit}} \\ & = 6|\underbrace{5+5}_{\text{1 carry over to next column}}|5+1|1|1 \\ & = 7|0|6|1|1\end{aligned}

Last 5 digits: 26699 + 70611 = 97310 \text{Last 5 digits: } 26699+70611 = 97310


See Pascal's triangle for better understanding .

1 1 0 = 1st row 1 1 1 = 2nd row 1 1 2 = 3rd row ...And so on \begin{aligned} 11^{0} & = \text{1st row } \\ 11^{1} & = \text{2nd row } \\ 11^{2} & = \text{3rd row } \\ & \text{...And so on }\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...