Prime tower part 2

2 3 5 7 1 1 13 \huge 2^{3^{5^{7^{11^{13}}}}}

Find the last 5 digits of the number given above.


Thanks Otto Bretscher and Pi Han Goh for Carmichael Function.


The answer is 94208.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let x = 2 3 5 7 1 1 13 x=2^{3^{5^{7^{11^{13}}}}} . We have that x 0 ( m o d 32 ) x \equiv 0 \pmod{32} , now let's find the remainder when x x is divided by 3125 3125 . Let y = 3 5 7 1 1 13 y=3^{5^{7^{11^{13}}}} , we have λ ( 3125 ) = 2500 \lambda(3125)=2500 , so x 2 y m o d 2500 ( m o d 3125 ) x \equiv 2^{y \mod 2500} \pmod {3125} .

Now let's find the remainder when y y is divided by 2500 2500 . Let z = 5 7 1 1 13 z=5^{7^{11^{13}}} , we have λ ( 2500 ) = 500 \lambda(2500)=500 , so y 3 z m o d 500 ( m o d 2500 ) y \equiv 3^{z \mod 500} \pmod{2500} .

We have z 0 ( m o d 125 ) z \equiv 0 \pmod{125} and z 1 ( m o d 4 ) z \equiv 1 \pmod{4} , so, by the Chinese Remainder Theorem , z 125 ( m o d 500 ) z \equiv 125 \pmod{500} .

Working backwards we have y 3 125 443 ( m o d 2500 ) y \equiv 3^{125} \equiv 443 \pmod{2500} , then x 2 443 458 ( m o d 3125 ) x \equiv 2^{443} \equiv 458 \pmod{3125} , and finally, using the Chinese Remainder Theorem again, x 94208 ( m o d 1 0 5 ) x \equiv \boxed{94208} \pmod{10^5} .


Note: λ \lambda denotes the Carmichael function .

A small error it should be z 0 ( m o d 125 ) z \equiv 0 \pmod{125}

Krutarth Patel - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...