Primes!

The positive number k is the product of four different positive prime numbers. If the sum of these four prime numbers is a prime number greater than 20, and the least possible value of k is ((x^2)-10)) ,find:

x^5-(x-1)^5


The answer is 723901.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P l e a s e c o r r e c t a t y p o . i t s h o u l d b e . . . . ( ( ( X 2 ) 10 ) o n e ) l e s s . Since the lest possible k is required, take first three smallest primes. Product of first three =2 * 3 * 5=30 and sum=2+3+5=10. I f P i s t h e 4 t h p r i m e , k + 10 = 30 P + 10 = X 2 . S o ( 3 P + 1 ) 10 = X 2 . Possible if 10|(3P+1), and 10|X. P must have 3 at unit place. . . ( ) First try, X=10, P=3. But 3 is the 2 n d p r i m e . N e x t X = 20 , 3 P = 39 , P = 13 , a p r i m e . So, k=2 * 3 * 5 * 13=390, k+10=400 = 2 0 2 X = 20. X 5 ( X 1 ) 5 = 2 0 5 1 9 5 = 723901. A L T E R N A T E L Y : F r o m ( ) After 5, next prime with 3 at unit place is 13. With P=13, X=20 turns out to be correct. Please~ correct ~a ~ typo. ~it ~should~ be....( ((X^2)-10)~~one ~)~less.\\\text{Since the lest possible k is required, take first three smallest primes.}\\ \text{Product of first three =2 * 3 * 5=30 and sum=2+3+5=10.}\\If~ P~ is ~the~ 4^{th}prime , k+10=30 * P+10=X^2.~ So~ (3P+1)10=X^2.\\ \text{Possible if 10|(3P+1), and 10|X. P must have 3 at unit place.}..\color{#D61F06}{(**)} \\\text{First try, X=10, P=3. But 3 is the } 2^{nd} ~prime.\\Next ~ X=20, 3P=39, P=13,~ a~ prime. \\\text{So, k=2 * 3 * 5 * 13=390, k+10=400 = } 20^2~~~~~\therefore~ X=20.\\X^5-(X-1)^5=20^5-19^5=723901 . \\ALTERNATELY:-~From~\color{#D61F06}{(**)}\text {After 5, next prime with 3 at unit}\\\text{ place is 13. With P=13, X=20 turns out to be correct.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...