Primes And A Double Product

Calculus Level 5

f ( n ) : = a = 1 p n b = 1 p n ( 1 + p n p n e 2 π i a b / p n ) \large f(n):=\prod_{a=1}^{p_n}\prod_{b=1}^{p_n}(1+\sqrt[p_n]{p_n}e^{2\pi i ab/p_n})

Let { p n } n = 1 = { 3 , 5 , 7 , 11 , } \{p_n\}_{n=1}^\infty=\{3,5,7,11,\ldots\} be the sequence of odd prime numbers in increasing order. Let us define the function above. Compute n = 1 2016 ( ( 1 + p n ) f ( n ) p n 1 + p n p n p n + n ) . \sum_{n=1}^{2016}\left( \frac{\sqrt[p_n]{(1+p_n)f(n)}}{1+\sqrt[p_n]{p_n}} -p_n +n\right).


The answer is 2035152.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Diego G
Aug 19, 2016

First let us fix a { 1 , 2 , , p n 1 } a\in\{1,2,\dots,p_n-1\} . We observe that p n p n e 2 π i b / p n \sqrt[p_n]{p_n}e^{2\pi i b/p_n} for b = 1 , 2 , , p n b=1,2,\dots,p_n are all the roots of the polynomial P ( x ) : = x p n p n P(x):=x^{p_n}-p_n . Moreover, since a a is relatively prime to p n p_n (for p n p_n is prime and a < p n a<p_n ), p n p n e 2 π i a b / p n \sqrt[p_n]{p_n}e^{2\pi i a b/p_n} are also the roots of the same polynomial (not necessarily in the same order). Therefore,

1 p n = P ( 1 ) = b = 1 p n ( ( 1 ) p n p n p n e 2 π i b / p n ) = b = 1 p n ( 1 p n p n e 2 π i b / p n ) , -1-p_n=P(-1)=\prod_{b=1}^{p_n}\left((-1)^{p_n}-\sqrt[p_n]{p_n}e^{2\pi i b/p_n}\right) =\prod_{b=1}^{p_n}\left(-1-\sqrt[p_n]{p_n}e^{2\pi i b/p_n}\right), (notice that p n p_n is odd, so ( 1 ) p n = 1 (-1)^{p_n}=-1 .)

Thus, we deduce that

a = 1 p n 1 b = 1 p n ( 1 + p n p n e 2 π i b / p n ) = a = 1 p n 1 ( 1 + p n ) = ( 1 + p n ) p n 1 . \prod_{a=1}^{p_n-1}\prod_{b=1}^{p_n} \left(1+\sqrt[p_n]{p_n}e^{2\pi i b/p_n}\right) =\prod_{a=1}^{p_n-1}(1+p_n) =(1+p_n)^{p_n-1}.

Now, when a = p n a=p_n ,

b = 1 p n ( 1 + p n p n e 2 i p n b / p n ) = b = 1 p n ( 1 + p n p n ) = ( 1 + p n p n ) p n . \prod_{b=1}^{p_n}\left(1+\sqrt[p_n]{p_n}e^{2 i p_n b/p_n}\right) =\prod_{b=1}^{p_n}(1+\sqrt[p_n]{p_n}) =(1+\sqrt[p_n]{p_n})^{p_n}.

Hence, f ( n ) = a = 1 p n b = 1 p n ( 1 + p n p n e 2 π i a b / p n ) = ( 1 + p n ) p n 1 ( 1 + p n p n ) p n . f(n)=\prod_{a=1}^{p_n}\prod_{b=1}^{p_n}(1+\sqrt[p_n]{p_n}e^{2\pi i ab/p_n}) =(1+p_n)^{p_n-1}(1+\sqrt[p_n]{p_n})^{p_n}.

Now it is simple to compute

n = 1 2016 ( ( 1 + p n ) f ( n ) p n 1 + p n p n p n + n ) = n = 1 2016 ( ( 1 + p n ) ( 1 + p n ) p n 1 ( 1 + p n p n ) p n p n 1 + p n p n p n + n ) = n = 1 2016 ( ( 1 + p n ) ( 1 + p n p n ) 1 + p n p n p n + n ) = n = 1 2016 ( 1 + p n p n + n ) = n = 1 2016 ( 1 + n ) = 2016 + 2016 2017 2 = 2035152. \begin{aligned} \sum_{n=1}^{2016}\left( \frac{\sqrt[p_n]{(1+p_n)f(n)}}{1+\sqrt[p_n]{p_n}} -p_n +n\right) &= \sum_{n=1}^{2016}\left( \frac{\sqrt[p_n]{(1+p_n) (1+p_n)^{p_n-1}(1+\sqrt[p_n]{p_n})^{p_n}}}{1+\sqrt[p_n]{p_n}} -p_n +n\right)\\ &= \sum_{n=1}^{2016}\left( \frac{ (1+p_n)(1+\sqrt[p_n]{p_n})}{1+\sqrt[p_n]{p_n}} -p_n +n\right)\\ &= \sum_{n=1}^{2016}\left( 1+p_n -p_n +n\right)\\ &=\sum_{n=1}^{2016}(1+n) =2016+\frac{2016\cdot 2017}2 =2035152. \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...