Squared Plus Two Can't Be Divided By You

Which of the following prime numbers cannot be a divisor of n 2 + 2 n^2+2 for any integer n ? n?

113 131 227 311

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The prime p p that we seek is the one for which 2 -2 is not a quadratic residue modulo p p .

Now since 1 5 2 = 225 2 ( m o d 227 ) 15^{2} = 225 \equiv -2 \pmod{227} we know that 227 227 is not the correct option. For the other three primes, we will make use of Euler's criterion with a = 2 a = -2 .

For p = 113 p = 113 we are looking to evaluate

( 2 ) 113 1 2 ( m o d 113 ) ( 2 ) 56 ( m o d 113 ) 2 56 ( m o d 113 ) (-2)^{\frac{113 - 1}{2}} \pmod{113} \equiv (-2)^{56} \pmod{113} \equiv 2^{56} \pmod{113} .

Now 2 7 = 128 15 ( m o d 113 ) 2 14 225 ( m o d 113 ) 1 ( m o d 113 ) 2^{7} = 128 \equiv 15 \pmod{113} \Longrightarrow 2^{14} \equiv 225 \pmod{113} \equiv -1 \pmod{113}

2 56 = ( 2 14 ) 4 ( 1 ) 4 1 ( m o d 113 ) \Longrightarrow 2^{56} = (2^{14})^{4} \equiv (-1)^{4} \equiv 1 \pmod{113} .

Thus by Euler's criterion 2 -2 is a quadratic residue modulo 113 113 , and so this prime is not the correct option.

For p = 131 p = 131 we are looking to evaluate ( 2 ) 131 1 2 ( m o d 131 ) ( 2 ) 65 ( m o d 131 ) (-2)^{\frac{131 - 1}{2}} \pmod{131} \equiv (-2)^{65} \pmod{131} .

Now ( 2 ) 8 = 256 6 ( m o d 131 ) ( 2 ) 16 36 ( m o d 131 ) (-2)^{8} = 256 \equiv -6 \pmod{131} \Longrightarrow (-2)^{16} \equiv 36 \pmod{131}

( 2 ) 32 1296 14 ( m o d 131 ) ( 2 ) 64 196 65 ( m o d 131 ) \Longrightarrow (-2)^{32} \equiv 1296 \equiv -14 \pmod{131} \Longrightarrow (-2)^{64} \equiv 196 \equiv 65 \pmod{131}

( 2 ) 65 2 65 ( m o d 131 ) 1 ( m o d 131 ) \Longrightarrow (-2)^{65} \equiv -2*65 \pmod{131} \equiv 1 \pmod{131} .

So by Euler's criterion 131 131 is not the correct option. This leaves us with just 311 311 , which we now need to confirm is the correct option.

We are looking to evaluate ( 2 ) 311 1 2 ( m o d 311 ) ( 2 ) 155 ( m o d 311 ) (-2)^{\frac{311 - 1}{2}} \pmod{311} \equiv (-2)^{155} \pmod{311} .

Now ( 2 ) 12 = 4096 53 ( m o d 311 ) ( 2 ) 24 2809 ( m o d 311 ) 10 ( m o d 311 ) (-2)^{12} = 4096 \equiv 53 \pmod{311} \Longrightarrow (-2)^{24} \equiv 2809 \pmod{311} \equiv 10 \pmod{311}

( 2 ) 96 10000 ( m o d 311 ) 48 ( m o d 311 ) \Longrightarrow (-2)^{96} \equiv 10000 \pmod{311} \equiv 48 \pmod{311}

( 2 ) 144 = ( 2 ) 96 ( 2 ) 48 48 100 ( m o d 311 ) 135 ( m o d 311 ) \Longrightarrow (-2)^{144} = (-2)^{96}*(-2)^{48} \equiv 48*100 \pmod{311} \equiv 135 \pmod{311}

( 2 ) 154 = ( 2 ) 144 ( 2 ) 10 135 91 ( m o d 311 ) 156 ( m o d 311 ) \Longrightarrow (-2)^{154} = (-2)^{144}*(-2)^{10} \equiv 135*91 \pmod{311} \equiv 156 \pmod{311}

( 2 ) 155 = ( 2 ) 154 ( 2 ) 156 ( 2 ) ( m o d 311 ) 312 ( m o d 311 ) 1 ( m o d 311 ) \Longrightarrow (-2)^{155} = (-2)^{154}*(-2) \equiv 156*(-2) \pmod{311} \equiv -312 \pmod{311} \equiv -1 \pmod{311} .

By Euler's criterion we have thus confirmed that 311 \boxed{311} cannot be a divisor of n 2 + 2 n^{2} + 2 for any integer n n .

In fact 2 -2 is a square mod p p if and only if p 1 p \equiv 1 or 3 3 mod 8 8 . This follows from the first and second supplements of the law of quadratic reciprocity .

Patrick Corn - 5 years, 4 months ago

Log in to reply

Ah, o.k., thanks for enlightening me. I'm still a bit of a novice on this topic. :P

Brian Charlesworth - 5 years, 4 months ago

We can also use the legendre symbol to get (-2/p) = -1

Jonathan Yang - 5 years, 4 months ago

@jonathan Yang That's true, then computations are so mush easier

Hanson Liu - 2 weeks, 4 days ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...