Which of the following prime numbers cannot be a divisor of for any integer
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The prime p that we seek is the one for which − 2 is not a quadratic residue modulo p .
Now since 1 5 2 = 2 2 5 ≡ − 2 ( m o d 2 2 7 ) we know that 2 2 7 is not the correct option. For the other three primes, we will make use of Euler's criterion with a = − 2 .
For p = 1 1 3 we are looking to evaluate
( − 2 ) 2 1 1 3 − 1 ( m o d 1 1 3 ) ≡ ( − 2 ) 5 6 ( m o d 1 1 3 ) ≡ 2 5 6 ( m o d 1 1 3 ) .
Now 2 7 = 1 2 8 ≡ 1 5 ( m o d 1 1 3 ) ⟹ 2 1 4 ≡ 2 2 5 ( m o d 1 1 3 ) ≡ − 1 ( m o d 1 1 3 )
⟹ 2 5 6 = ( 2 1 4 ) 4 ≡ ( − 1 ) 4 ≡ 1 ( m o d 1 1 3 ) .
Thus by Euler's criterion − 2 is a quadratic residue modulo 1 1 3 , and so this prime is not the correct option.
For p = 1 3 1 we are looking to evaluate ( − 2 ) 2 1 3 1 − 1 ( m o d 1 3 1 ) ≡ ( − 2 ) 6 5 ( m o d 1 3 1 ) .
Now ( − 2 ) 8 = 2 5 6 ≡ − 6 ( m o d 1 3 1 ) ⟹ ( − 2 ) 1 6 ≡ 3 6 ( m o d 1 3 1 )
⟹ ( − 2 ) 3 2 ≡ 1 2 9 6 ≡ − 1 4 ( m o d 1 3 1 ) ⟹ ( − 2 ) 6 4 ≡ 1 9 6 ≡ 6 5 ( m o d 1 3 1 )
⟹ ( − 2 ) 6 5 ≡ − 2 ∗ 6 5 ( m o d 1 3 1 ) ≡ 1 ( m o d 1 3 1 ) .
So by Euler's criterion 1 3 1 is not the correct option. This leaves us with just 3 1 1 , which we now need to confirm is the correct option.
We are looking to evaluate ( − 2 ) 2 3 1 1 − 1 ( m o d 3 1 1 ) ≡ ( − 2 ) 1 5 5 ( m o d 3 1 1 ) .
Now ( − 2 ) 1 2 = 4 0 9 6 ≡ 5 3 ( m o d 3 1 1 ) ⟹ ( − 2 ) 2 4 ≡ 2 8 0 9 ( m o d 3 1 1 ) ≡ 1 0 ( m o d 3 1 1 )
⟹ ( − 2 ) 9 6 ≡ 1 0 0 0 0 ( m o d 3 1 1 ) ≡ 4 8 ( m o d 3 1 1 )
⟹ ( − 2 ) 1 4 4 = ( − 2 ) 9 6 ∗ ( − 2 ) 4 8 ≡ 4 8 ∗ 1 0 0 ( m o d 3 1 1 ) ≡ 1 3 5 ( m o d 3 1 1 )
⟹ ( − 2 ) 1 5 4 = ( − 2 ) 1 4 4 ∗ ( − 2 ) 1 0 ≡ 1 3 5 ∗ 9 1 ( m o d 3 1 1 ) ≡ 1 5 6 ( m o d 3 1 1 )
⟹ ( − 2 ) 1 5 5 = ( − 2 ) 1 5 4 ∗ ( − 2 ) ≡ 1 5 6 ∗ ( − 2 ) ( m o d 3 1 1 ) ≡ − 3 1 2 ( m o d 3 1 1 ) ≡ − 1 ( m o d 3 1 1 ) .
By Euler's criterion we have thus confirmed that 3 1 1 cannot be a divisor of n 2 + 2 for any integer n .