Primes can make answers Creative @Brilliant

Geometry Level 4

The value of 2 sin 2 ° + 4 sin 4 ° + 6 sin 6 ° + . . . . . . + 180 sin 180 ° 2 \sin 2°+ 4 \sin 4°+ 6 \sin 6°+ ......+ 180 \sin 180° is P Q ( R ° ) P•Q(R°) , where P P and R R are integers, and Q Q is a trigonometric function.

If Q Q is csc \csc , let S = 2 S = 2 .
If Q Q is sec \sec , let S = 3 S = 3 .
If Q Q is cot \cot , let S = 5 S = 5 .

What is the value of ( P + R ) × S ( P + R) \times S ?

Note: R R is an integer from 0 to 90.


The answer is 455.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

U Z
Nov 5, 2014

2 s i n 2 + 4 s i n 4 + 6 s i n 6 + . . . . . . . . . . . . . . . . . . . . . . . + 178 s i n 17 8 + 180 s i n 18 0 2sin2^{\circ} + 4sin4^{\circ} + 6sin6^{\circ} + ....................... + 178sin178^{\circ} + 180sin180^{\circ}

2 s i n 2 + 4 s i n 4 + 6 s i n 6 + . . . . . . . . . . . . . . . . . . . . . . . . . . + 178 s i n 2 + 0 2sin2^{\circ} + 4sin4^{\circ} + 6sin6^{\circ} + .......................... + 178sin2^{\circ} + 0

adding or pairing last and the first term , similarly second and second last till 88 s i n 8 8 88sin88^{\circ} , and we will not pair 90 s i n 9 0 90sin90^{\circ} .

thus we get

180 s i n 2 + 180 s i n 4 + 180 s i n 6 + . . . . . . . . . . . . . . . . . . . . . . . + 180 s i n 8 8 + 90 180sin2^{\circ} + 180sin4^{\circ} + 180sin6^{\circ} + ....................... + 180sin88^{\circ} + 90

180 ( s i n 2 + s i n 4 + . . . . . . . . . . . . . . . . . . . . . + s i n 8 8 ) + 90 180( sin2^{\circ} + sin4^{\circ} + ..................... + sin88^{\circ}) + 90

multiplying and dividing by 2 s i n 1 2sin1^{\circ}

180 2 s i n 1 ( 2 s i n 1 s i n 2 + 2 s i n 1 s i n 4 + . . . . . . . . . . . . . . . + 2 s i n 1 s i n 8 8 ) + 90 \frac{180}{2sin1^{\circ}}( 2sin1^{\circ}sin2^{\circ} + 2sin1^{\circ}sin4^{\circ} + ............... + 2sin1^{\circ}sin88^{\circ}) + 90

now 2 s i n a s i n b = c o s ( a b ) c o s ( a + b ) 2sina^{\circ} sinb^{\circ} = cos(a - b) - cos(a + b)

thus,

180 2 s i n 1 ( c o s 1 c o s 3 + c o s 3 c o s 5 + c o s 5 . . . . . . . c o s 8 9 ) + 90 \frac{180}{2sin1^{\circ}}(cos1^{\circ} - cos3^{\circ} + cos3^{\circ} - cos5^{\circ} + cos5^{\circ} ....... - cos89^{\circ} ) + 90

180 2 s i n 1 ( c o s 1 s i n ( 90 89 ) ) + 90 \frac{180}{2sin1^{\circ}}(cos1^{\circ} - sin(90 - 89)^{\circ}) + 90

90 c o t 1 90 + 90 90cot1^{\circ} - 90 + 90

= 90 c o t 1 = 90cot1^{\circ}

Anyone is having other method?

Awesome question with awesome solution !

Sandeep Bhardwaj - 6 years, 7 months ago

If someone would've missed the trigonometric manipulation I believe the formula for summation of sine: (sin((a+d)/2) sin(n CD/2))/sin(CD/2) would've done the job as well in the 3rd step ?

Yash Akhauri - 6 years, 7 months ago

Log in to reply

But who remembers formula

sandeep Rathod - 6 years, 7 months ago

Such English

Shabarish Ch - 6 years, 7 months ago

@Sanjeet Raria Nice question enjoyed solving it

U Z - 6 years, 7 months ago
Kartik Sharma
Nov 9, 2014

2 s i n 2 + 4 s i n 4 + 6 s i n 6 + . . . . . + 180 s i n 180 2sin2 + 4sin4 + 6sin6 +..... + 180sin180

= 2 ( s i n 2 + 2 s i n 4 + 3 s i n 6 + . . . . . + 90 s i n 180 2(sin2 + 2sin4 + 3sin6 + ..... + 90sin180

Now, s i n 2 + 2 s i n 4 + 3 s i n 6 + . . . . + 90 s i n 180 = ( s i n 2 + s i n 4 + s i n 6 + . . . s i n 180 ) + ( s i n 4 + s i n 6 + . . . . s i n 180 ) + ( s i n 6 + . . . . s i n 180 ) + . . . . . . ( s i n 178 + s i n 180 ) + ( s i n 180 ) sin2 + 2 sin4 + 3sin6 +.... + 90sin180 = (sin2 + sin4 + sin6 +... sin180) + (sin4 + sin6 +.... sin 180) + (sin6 +....sin180) +...... (sin178 + sin180) + (sin180)

Hence there are 90 such sums of sines with angles in AP and different first term.

Using the formula s i n α + s i n ( α + β ) + . . . . . s i n ( α + ( n 1 ) β ) = s i n n β 2 s i n β 2 s i n ( α + ( n 1 ) β 2 ) sin\alpha + sin(\alpha + \beta) +..... sin(\alpha + (n-1)\beta) = \frac{sin\frac{n\beta}{2}}{sin\frac{\beta}{2}} sin(\alpha + (n-1)\frac{\beta}{2}) repeatedly, we get

s i n 2 + 2 s i n 4 + 3 s i n 6 + . . . . + 90 s i n 180 = ( s i n 2 + s i n 4 + s i n 6 + . . . s i n 180 ) + ( s i n 4 + s i n 6 + . . . . s i n 180 ) + ( s i n 6 + . . . . s i n 180 ) + . . . . . . ( s i n 178 + s i n 180 ) + ( s i n 180 ) = s i n 90 s i n 1 s i n 91 + s i n 89 s i n 1 s i n 92 + . . . . . + s i n 1 s i n 1 s i n 180 sin2 + 2 sin4 + 3sin6 +.... + 90sin180 = (sin2 + sin4 + sin6 +... sin180) + (sin4 + sin6 +.... sin 180) + (sin6 +....sin180) +...... (sin178 + sin180) + (sin180) = \frac{sin90}{sin1} sin91 + \frac{sin89}{sin1} sin 92 + ..... + \frac{sin1}{sin1} sin 180

= ( s i n 90 ) ( s i n 91 ) + ( s i n 89 ) ( s i n 92 ) + . . . . + ( s i n 1 ) ( s i n 180 ) s i n 1 \frac{(sin90)(sin91) + (sin89)(sin92) + .... + (sin1)(sin180)}{sin1}

Now, s i n ( 90 + x ) = c o s x sin(90 + x) = cos x

= ( s i n 90 ) ( c o s 1 ) + ( s i n 89 ) ( c o s 2 ) + . . . . + ( s i n 2 ) ( c o s 89 ) + ( s i n 1 ) ( c o s 90 ) s i n 1 \frac{(sin90)(cos1) + (sin89)(cos2) +.... + (sin2)(cos89) + (sin1)(cos90)}{sin1}

Now, \(sinAcosB + sinBcosA = sin(A+B)

= \(\frac{(sin90cos1 + cos90sin1) + (sin89cos2 + sin2cos89) + ..... (sin46cos45 + sin45cos46)}{sin1}\)

= s i n 91 + s i n 91 + s i n 91 + . . . . . s i n 91 s i n 1 \frac{sin91 + sin91 + sin91 +..... sin91}{sin1}

= 45 s i n 91 s i n 1 \frac{45*sin91}{sin1}

As we have already seen that sin91 = cos1,

= 45 c o t 1 45*cot 1

Now, we have already taken a 2 out of the product, hence, the correct answer is

90 c o t 1 \boxed{90 * cot 1}

Omkar Kamat
Dec 22, 2014

This is the same problem as USAMO 1996 p1

Mehul Chaturvedi
Dec 17, 2014

we know that

sin x = sin(180-x)

we will be using this formula here.

2sin2 +4sin4+...+180 sin180

=2sin2 +4sin4 +..178 sin 178+0...as sin 180 =0

now since sin2 = sin 178, sin4 = sin176...

we get

given expression

=(2sin2 +178 sin2)+(4 sin 4 + 176 sin4) +....+ (88sin88+92 sin88)+90sin 90

=180 sin 2+180 sin4+...+180 sin 88++90

=180 (sin2 +sin4 +...+sin88)+90

=90[(2sin1 sin2+2sin1 sin4+...+2sin1 sin88)/sin1]+90

=90{[(cos1-cos3)+(cos3-cos5)+...+(cos87-cos89)]}/2+{90}

=90[(cos1-cos89)/sin1]+90

=90[(cos1/sin1)-(cos89/sin1)]+90

but cos89=sin1

so

given expression

=90[cot1-(sin1/sin1)]+90

=90 cot1 -90+90

=90 cot 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...