The value of 2 sin 2 ° + 4 sin 4 ° + 6 sin 6 ° + . . . . . . + 1 8 0 sin 1 8 0 ° is P • Q ( R ° ) , where P and R are integers, and Q is a trigonometric function.
If
Q
is
csc
, let
S
=
2
.
If
Q
is
sec
, let
S
=
3
.
If
Q
is
cot
, let
S
=
5
.
What is the value of ( P + R ) × S ?
Note: R is an integer from 0 to 90.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Awesome question with awesome solution !
If someone would've missed the trigonometric manipulation I believe the formula for summation of sine: (sin((a+d)/2) sin(n CD/2))/sin(CD/2) would've done the job as well in the 3rd step ?
Log in to reply
But who remembers formula
Such English
@Sanjeet Raria Nice question enjoyed solving it
2 s i n 2 + 4 s i n 4 + 6 s i n 6 + . . . . . + 1 8 0 s i n 1 8 0
= 2 ( s i n 2 + 2 s i n 4 + 3 s i n 6 + . . . . . + 9 0 s i n 1 8 0
Now, s i n 2 + 2 s i n 4 + 3 s i n 6 + . . . . + 9 0 s i n 1 8 0 = ( s i n 2 + s i n 4 + s i n 6 + . . . s i n 1 8 0 ) + ( s i n 4 + s i n 6 + . . . . s i n 1 8 0 ) + ( s i n 6 + . . . . s i n 1 8 0 ) + . . . . . . ( s i n 1 7 8 + s i n 1 8 0 ) + ( s i n 1 8 0 )
Hence there are 90 such sums of sines with angles in AP and different first term.
Using the formula s i n α + s i n ( α + β ) + . . . . . s i n ( α + ( n − 1 ) β ) = s i n 2 β s i n 2 n β s i n ( α + ( n − 1 ) 2 β ) repeatedly, we get
s i n 2 + 2 s i n 4 + 3 s i n 6 + . . . . + 9 0 s i n 1 8 0 = ( s i n 2 + s i n 4 + s i n 6 + . . . s i n 1 8 0 ) + ( s i n 4 + s i n 6 + . . . . s i n 1 8 0 ) + ( s i n 6 + . . . . s i n 1 8 0 ) + . . . . . . ( s i n 1 7 8 + s i n 1 8 0 ) + ( s i n 1 8 0 ) = s i n 1 s i n 9 0 s i n 9 1 + s i n 1 s i n 8 9 s i n 9 2 + . . . . . + s i n 1 s i n 1 s i n 1 8 0
= s i n 1 ( s i n 9 0 ) ( s i n 9 1 ) + ( s i n 8 9 ) ( s i n 9 2 ) + . . . . + ( s i n 1 ) ( s i n 1 8 0 )
Now, s i n ( 9 0 + x ) = c o s x
= s i n 1 ( s i n 9 0 ) ( c o s 1 ) + ( s i n 8 9 ) ( c o s 2 ) + . . . . + ( s i n 2 ) ( c o s 8 9 ) + ( s i n 1 ) ( c o s 9 0 )
Now, \(sinAcosB + sinBcosA = sin(A+B)
= \(\frac{(sin90cos1 + cos90sin1) + (sin89cos2 + sin2cos89) + ..... (sin46cos45 + sin45cos46)}{sin1}\)
= s i n 1 s i n 9 1 + s i n 9 1 + s i n 9 1 + . . . . . s i n 9 1
= s i n 1 4 5 ∗ s i n 9 1
As we have already seen that sin91 = cos1,
= 4 5 ∗ c o t 1
Now, we have already taken a 2 out of the product, hence, the correct answer is
9 0 ∗ c o t 1
This is the same problem as USAMO 1996 p1
we know that
sin x = sin(180-x)
we will be using this formula here.
2sin2 +4sin4+...+180 sin180
=2sin2 +4sin4 +..178 sin 178+0...as sin 180 =0
now since sin2 = sin 178, sin4 = sin176...
we get
given expression
=(2sin2 +178 sin2)+(4 sin 4 + 176 sin4) +....+ (88sin88+92 sin88)+90sin 90
=180 sin 2+180 sin4+...+180 sin 88++90
=180 (sin2 +sin4 +...+sin88)+90
=90[(2sin1 sin2+2sin1 sin4+...+2sin1 sin88)/sin1]+90
=90{[(cos1-cos3)+(cos3-cos5)+...+(cos87-cos89)]}/2+{90}
=90[(cos1-cos89)/sin1]+90
=90[(cos1/sin1)-(cos89/sin1)]+90
but cos89=sin1
so
given expression
=90[cot1-(sin1/sin1)]+90
=90 cot1 -90+90
=90 cot 1
Problem Loading...
Note Loading...
Set Loading...
2 s i n 2 ∘ + 4 s i n 4 ∘ + 6 s i n 6 ∘ + . . . . . . . . . . . . . . . . . . . . . . . + 1 7 8 s i n 1 7 8 ∘ + 1 8 0 s i n 1 8 0 ∘
2 s i n 2 ∘ + 4 s i n 4 ∘ + 6 s i n 6 ∘ + . . . . . . . . . . . . . . . . . . . . . . . . . . + 1 7 8 s i n 2 ∘ + 0
adding or pairing last and the first term , similarly second and second last till 8 8 s i n 8 8 ∘ , and we will not pair 9 0 s i n 9 0 ∘ .
thus we get
1 8 0 s i n 2 ∘ + 1 8 0 s i n 4 ∘ + 1 8 0 s i n 6 ∘ + . . . . . . . . . . . . . . . . . . . . . . . + 1 8 0 s i n 8 8 ∘ + 9 0
1 8 0 ( s i n 2 ∘ + s i n 4 ∘ + . . . . . . . . . . . . . . . . . . . . . + s i n 8 8 ∘ ) + 9 0
multiplying and dividing by 2 s i n 1 ∘
2 s i n 1 ∘ 1 8 0 ( 2 s i n 1 ∘ s i n 2 ∘ + 2 s i n 1 ∘ s i n 4 ∘ + . . . . . . . . . . . . . . . + 2 s i n 1 ∘ s i n 8 8 ∘ ) + 9 0
now 2 s i n a ∘ s i n b ∘ = c o s ( a − b ) − c o s ( a + b )
thus,
2 s i n 1 ∘ 1 8 0 ( c o s 1 ∘ − c o s 3 ∘ + c o s 3 ∘ − c o s 5 ∘ + c o s 5 ∘ . . . . . . . − c o s 8 9 ∘ ) + 9 0
2 s i n 1 ∘ 1 8 0 ( c o s 1 ∘ − s i n ( 9 0 − 8 9 ) ∘ ) + 9 0
9 0 c o t 1 ∘ − 9 0 + 9 0
= 9 0 c o t 1 ∘
Anyone is having other method?