Primes Making Perfect Squares

Let P P be the set of all primes p p which satisfy the condition that 5 p + 1 2 p 5^p + 12^p is a perfect square. What is the sum of the elements of P P ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Xuesong Du
May 20, 2014

One solution is p = 2 p=2 . If there are any more solutions, p p must be an odd number since it is prime. Let p = 2 m + 1 p = 2m+1 . Consider the expression modulo 12, it will have value 5. However, any square number modulo 12 will be equal to 0 , 1 , 4 , 9 0,1,4,9 . Hence there are no other solutions other than 2, so the sum of all elements of P P is 2.

This can be simplified slightly by considering modulo 3.

Calvin Lin Staff - 7 years ago
Ryandk St
May 20, 2014

a perfect square x=n^2,then x%3=0||1,x=5^p+12^p,so x%3 must be 1.(5^p)%3=(-1)^p %3=1%3,so p must be even.but p is also a prime.so p can be only 2

Calvin Lin Staff
May 13, 2014

Solution 1: Let 5 p + 1 2 p = n 2 5^p+12^p =n^2 . Consider modulo 3. Since n n is an integer, n 0 , 1 n \equiv 0,1 or 2 ( m o d 3 ) 2 \pmod{3} , so n 2 0 0 0 ( m o d 3 ) , n 2 1 1 1 ( m o d 3 ) n^2 \equiv 0\cdot 0 \equiv 0 \pmod{3}, n^2 \equiv 1\cdot 1 \equiv 1 \pmod{3} or n 2 2 2 1 ( m o d 3 ) n^2 \equiv 2\cdot 2 \equiv 1 \pmod{3} . Thus, n 2 0 , 1 ( m o d 3 ) n^2 \equiv 0,1 \pmod{3} . Hence 5 p + 1 2 p 5 p 2 p 0 , 1 ( m o d 3 ) 5^p + 12^p \equiv 5^p \equiv 2^p \equiv 0, 1 \pmod{3} . Since 2 p ≢ 0 ( m o d 3 ) 2^p \not \equiv 0 \pmod{3} , we must have 2 p 1 ( m o d 3 ) 2^p \equiv 1 \pmod{3} . Since 2 2 k + 1 ( 2 2 ) k 2 1 k 2 2 ( m o d 3 ) 2^{2k+1} \equiv (2^2)^k\cdot 2 \equiv 1^k\cdot 2 \equiv 2 \pmod{3} , this implies that p p must be even. The only even prime is 2, thus p = 2 p=2 is the only possible solution. Checking this case, we see that 5 2 + 1 2 2 = 1 3 2 5^2 + 12 ^2 = 13^2 is a perfect square, thus P = { 2 } P=\{2\} and the sum of the elements in P P is 2 2 .

Solution 2: Let 5 p + 1 2 p = n 2 5^p+12^p=n^2 . Consider modulo 5. Since n n is an integer, n 0 , 1 , 2 , 3 n \equiv 0,1,2,3 or 4 ( m o d 5 ) 4 \pmod{5} , so n 2 0 0 0 ( m o d 5 ) , n^2 \equiv 0\cdot 0 \equiv 0 \pmod{5}, n 2 1 1 1 ( m o d 5 ) , n^2 \equiv 1\cdot 1 \equiv 1 \pmod{5}, n 2 2 2 4 ( m o d 5 ) , n^2 \equiv 2\cdot 2 \equiv 4 \pmod{5}, n 2 3 3 4 ( m o d 5 ) n^2 \equiv 3\cdot 3 \equiv 4 \pmod{5} or n 2 4 4 1 ( m o d 5 ) n^2 \equiv 4\cdot 4 \equiv 1 \pmod{5} . Thus, n 2 0 , 1 , 4 ( m o d 5 ) n^2 \equiv 0, 1, 4 \pmod{5} . Hence 5 p + 1 2 p 1 2 p 2 p 0 , 1 , 4 ( m o d 5 ) 5^p + 12^p \equiv 12^p \equiv 2^p \equiv 0, 1, 4 \pmod{5} . It is impossible to have 2 p 0 ( m o d 5 ) 2^p \equiv 0 \pmod{5} thus 2 p 1 , 4 ( m o d 5 ) 2^p \equiv 1, 4 \pmod{5} . Let's check the remainders of 2 p 2^p . Since 2 4 16 1 ( m o d 5 ) 2^4 \equiv 16 \equiv 1 \pmod{5} , we have 2 4 k 1 ( m o d 5 ) 2^{4k} \equiv 1 \pmod{5} , 2 4 k + 1 2 ( m o d 5 ) 2^{4k+1}\equiv 2 \pmod{5} , 2 4 k + 2 4 ( m o d 5 ) 2^{4k+2}\equiv 4 \pmod{5} and 2 4 k + 3 3 ( m o d 5 ) 2^{4k+3}\equiv 3 \pmod{5} . Hence, p = 4 k p=4k or 4 k + 2 4k+2 . Since these numbers are even, the only possible prime is p = 2 p=2 . Checking this case, we see that 5 2 + 1 2 2 = 1 3 2 5^2 + 12 ^2 = 13^2 , thus P = { 2 } P=\{2\} and the sum of the elements in P P is 2 2 .

Wai Zhen Liew
May 20, 2014

prime number only can divided by itself or 1. let the perfect square=x^2 5^p+12^p=x^2 (5^p+12^p)^1/2=x since p must perfectly divide 2. so answer is 2

Jiahao Lee
May 20, 2014

When p = 2, 5 2 5^2 + 1 2 2 12^2 = 1 3 2 13^2 , hence 2 belongs to set P. Now, we claim that all p>2 does not satisfy the condition that 5 p 5^p + 1 2 p 12^p is a perfect square. We prove this by first observing that for any natural number k, k 2 0 ( m o d 3 ) k^2 \equiv 0 \pmod{3} or k 2 1 ( m o d 3 ) k^2 \equiv 1 \pmod{3} . Then, by writing p = 3 + m 3 + m , m 0 m \geq 0 , 1 2 3 + m 12^{3+m} = ( 3 × 4 ) 3 + m ({3 \times 4})^{3+m} 0 ( m o d 3 ) \equiv 0 \pmod{3} , and 5 3 + m 5^{3+m} = 125 × 2 5 m 125 \times 25^m 2 ( m o d 3 ) \equiv 2 \pmod{3} . Therefore, 5 3 + m 5^{3+m} + 1 2 3 + m 12^{3+m} 2 ( m o d 3 ) \equiv 2 \pmod{3} , implying that for all (p \geq 3)\, the sum is not a perfect square. Since P = {2}, sum of elements = 2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...