Prisms

Calculus Level pending

Using a 4 n 4n -gonal prism, for each n N n \in \mathbb{N} let the lateral surface area be a n a_{n} and the volume V n = 1 V_{n} = 1 .

  1. Find the the sequence a n a_{n} that minimizes the distance d n d_{n} and find d n d_{n} .
  2. Find a = lim n a n \displaystyle a = \lim_{n \rightarrow \infty} a_{n} and d = lim n d n \displaystyle d = \lim_{n \rightarrow \infty} d_{n} .
  3. Check your result in (2) by doing the problem using a right circular cylinder and express the distance d d to two decimal places.

In the above octagonal prism n = 2 n = 2 and d = d 2 d = d_{2} .


The answer is 1.49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 7, 2018

For area of 4 n g o n 4n - gon :

Let P Q = x PQ = x be a side of the 4 n g o n 4n - gon , P B = Q B = m PB = QB= m , A B = h AB = h^* , and Q B A = π 4 n \angle{QBA} = \dfrac{\pi}{4n} .

x 2 = m sin ( π 4 n ) m = x 2 sin ( π 4 n ) h = x 2 cot ( π 4 n ) \dfrac{x}{2} = m \sin(\dfrac{\pi}{4n}) \implies m = \dfrac{x}{2 \sin(\dfrac{\pi}{4n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{\pi}{4n}) \implies the area of the 4 n 4n -gon A = n x 2 cot ( π 4 n ) A = nx^2\cot(\dfrac{\pi}{4n}) .

The volume V = n x 2 cot ( π 4 n ) H = 1 H = tan ( π 4 n ) n x 2 V = nx^2\cot(\dfrac{\pi}{4n}) H = 1 \implies H = \dfrac{\tan(\dfrac{\pi}{4n})}{nx^2}

The lateral surface area S = 4 n x H = 4 tan ( π 4 n ) x = a x = 4 tan ( π 4 n ) a m = 2 sec ( π 4 n ) a S = 4nxH = \dfrac{4\tan(\dfrac{\pi}{4n})}{x} = a \implies x = \dfrac{4\tan(\dfrac{\pi}{4n})}{a} \implies m = \dfrac{2\sec(\dfrac{\pi}{4n})}{a} and H = cot ( π 4 n ) a 2 16 n H = \dfrac{\cot(\dfrac{\pi}{4n})a^2}{16n} \implies D ( a ) = d 2 ( a ) = 4 m 2 + H 2 = 16 sec 2 ( π 4 n ) a 2 + cot 2 ( π 4 n ) a 4 1 6 2 n 2 D(a) = d^2(a) = 4m^2 + H^2 = \dfrac{16\sec^2(\dfrac{\pi}{4n})}{a^2} + \dfrac{\cot^2(\dfrac{\pi}{4n})a^4}{16^2 n^2} \implies

d D d a = cot 2 ( π 4 n ) a 6 2 11 sec 2 ( π 4 n ) n 2 2 6 n 2 a 3 = 0 \dfrac{dD}{da} = \dfrac{\cot^2(\dfrac{\pi}{4n}) a^6 - 2^{11}\sec^2(\dfrac{\pi}{4n})n^2}{2^6 n^2 a^3} = 0 a 6 = 2 11 sin 2 ( π 4 n ) n 2 cos 4 ( π 4 n ) \implies a^6 = \dfrac{2^{11}\sin^2(\dfrac{\pi}{4n}) n^2}{\cos^4(\dfrac{\pi}{4n})}

a > 0 a n = 2 11 6 ( n sin ( π 4 n ) cos 2 ( π 4 n ) ) 1 3 a > 0 \implies \boxed{a_{n} = 2^{\dfrac{11}{6}}(\dfrac{n\sin(\dfrac{\pi}{4n})}{\cos^2(\dfrac{\pi}{4n})})^{\dfrac{1}{3}}}

d 2 D d a 2 > 0 \dfrac{d^2D}{da^2} > 0 at a = 2 11 6 ( n sin ( π 4 n ) cos 2 ( π 4 n ) ) 1 3 a = 2^{\dfrac{11}{6}}(\dfrac{n\sin(\dfrac{\pi}{4n})}{\cos^2(\dfrac{\pi}{4n})})^{\dfrac{1}{3}} \implies min at a a . You can check this for yourself.

Let j n = n sin ( π 4 ) j_{n} = n\sin(\dfrac{\pi}{4}) .

Using the inequality cos ( x ) < sin ( x ) x < 1 π 4 cos ( π 4 n ) < j n < π 4 lim n a n = 2 11 6 ( π 4 ) 1 3 = \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \dfrac{\pi}{4}\cos(\dfrac{\pi}{4n}) < j_{n} < \dfrac{\pi}{4} \implies \lim_{n \rightarrow \infty} a_{n} = 2^{\dfrac{11}{6}} (\dfrac{\pi}{4})^{\dfrac{1}{3}} = 2 7 6 π 1 3 \boxed{2^{\dfrac{7}{6}} * \pi^{\dfrac{1}{3}}} .

a n = 2 11 6 ( n sin ( π 4 n ) cos 2 ( π 4 n ) ) 1 3 m = 2 ( n sin ( π 2 n ) ) 1 3 a_{n} = 2^{\dfrac{11}{6}}(\dfrac{n\sin(\dfrac{\pi}{4n})}{\cos^2(\dfrac{\pi}{4n})})^{\dfrac{1}{3}} \implies m = \dfrac{\sqrt{2}}{(n\sin(\dfrac{\pi}{2n}))^{\dfrac{1}{3}}} and H = 1 ( n sin ( π 2 n ) ) 1 3 d n = 3 ( n sin ( π 2 n ) ) 1 3 H = \dfrac{1}{(n\sin(\dfrac{\pi}{2n}))^{\dfrac{1}{3}}} \implies \boxed{d_{n} = \dfrac{\sqrt{3}}{(n\sin(\dfrac{\pi}{2n}))^{\dfrac{1}{3}}}}

Let j n = n sin ( π 4 ) j^{*}_{n} = n\sin(\dfrac{\pi}{4}) .

Using the inequality cos ( x ) < sin ( x ) x < 1 π 2 cos ( π 2 n ) < j n < π 2 lim n j n = π 2 \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \dfrac{\pi}{2}\cos(\dfrac{\pi}{2n}) < j^{*}_{n} < \dfrac{\pi}{2} \implies \lim_{n \rightarrow \infty} j^{*}_{n} = \dfrac{\pi}{2} \implies lim n d n = 3 ( 2 π ) 1 3 \lim_{n \rightarrow \infty} d_{n} = \boxed{\sqrt{3} * (\dfrac{2}{\pi})^{\dfrac{1}{3}}} .

Doing the problem using a cylinder:

V = π r 2 H = 1 H = 1 π r 2 S = 2 π r H = r a H = a 2 4 π D ( a ) = d 2 ( a ) = 4 r 2 + H 2 = 16 a 2 + a 4 16 π 2 V = \pi r^2 H = 1 \implies H = \dfrac{1}{\pi r^2} \implies S = 2\pi r H = \dfrac{r}{a} \implies H = \dfrac{a^2}{4\pi} \implies D(a) = d^2(a) = 4r^2 + H^2 = \dfrac{16}{a^2} + \dfrac{a^4}{16\pi^2} \implies

d D d a = a 6 2 7 π 2 4 π 2 a 3 = 0 \dfrac{dD}{da} = \dfrac{a^6 - 2^7\pi^2}{4\pi^2 a^3} = 0 \implies a = 2 7 6 π 1 3 \boxed{a = 2^{\dfrac{7}{6}} \pi^{\dfrac{1}{3}}} for a > 0 d = 3 ( 2 π ) 1 3 1.49 a > 0 \implies \boxed{d = \sqrt{3} * (\dfrac{2}{\pi})^{\dfrac{1}{3}}} \approx \boxed{1.49} .

.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...