Probability of a point in a region of a triangle

Geometry Level 5

A triangle has vertices A = ( 0 , 0 ) , B = ( 12 , 0 ) A=(0,0), B=(12,0) and C = ( 8 , 10 ) C=(8,10) .

The probability that a randomly chosen point inside the triangle is closer to vertex B B than to either vertex A A or vertex C C can be written as p q \dfrac pq , for coprime positive integers.

Find p + q p+q .


The answer is 409.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nicola Mignoni
Mar 31, 2018

An uniformly random chosen point P P in the triangle has the following parametrization:

P = { ( x , y ) R 2 4 5 y x 12 2 5 y , 0 y 10 } \displaystyle P=\{(x,y) \in \mathbb{R^2} \hspace{5pt} | \hspace{5pt} \frac{4}{5}y \leq x \leq 12-\frac{2}{5}y, \hspace{5pt} 0 \leq y \leq 10\} .

Point P P has to be closer to B B than to the other vertices, so P B P A \overline{PB} \leq \overline{PA} and P B P C \overline{PB} \leq \overline{PC} :

{ ( x 12 ) 2 + y 2 x 2 + y 2 ( x 12 ) 2 + y 2 ( x 8 ) 2 + ( y 10 ) 2 { x 6 y 1 5 ( 2 x + 5 ) \displaystyle \begin{cases} (x-12)^2+y^2 \leq x^2+y^2 \\ (x-12)^2+y^2 \leq (x-8)^2+(y-10)^2 \end{cases} \hspace{8pt} \Longrightarrow \hspace{8pt} \begin{cases} x \geq 6 \\ \displaystyle y \leq \frac{1}{5} (2x+5) \end{cases}

The previous result describes a portion that we'll call A A of the x y xy plane:

A = { ( x , y ) R 2 x 6 , y 1 5 ( 2 x + 5 ) } \displaystyle A=\{(x,y) \in \mathbb{R^2} \hspace{5pt} | \hspace{5pt} x \geq 6, \hspace{5pt} y \leq \frac{1}{5} (2x+5)\} .

The portion of the region described by P P we're interested in is S S , such that

S = P A = S 1 S 2 \displaystyle S=P \cap A = S_1 \cup S_2

where

S 1 = { ( x , y ) R 2 6 x 12 2 5 y , 0 y 17 5 } \displaystyle S_1=\{(x,y) \in \mathbb{R^2} \hspace{5pt} | \hspace{5pt} 6 \leq x \leq 12-\frac{2}{5}y, \hspace{5pt} 0 \leq y \leq \frac{17}{5}\} ;

S 2 = { ( x , y ) R 2 5 2 ( y 1 ) x 12 2 5 y , 17 5 y 5 } \displaystyle S_2=\{(x,y) \in \mathbb{R^2} \hspace{5pt} | \hspace{5pt} \frac{5}{2} (y-1) \leq x \leq 12-\frac{2}{5}y, \hspace{5pt} \frac{17}{5} \leq y \leq 5\} .

Than

A r e a ( S ) = A r e a ( S 1 ) + A r e a ( S 2 ) = 0 17 5 6 12 2 5 y d x d y + 17 5 5 5 2 ( y 1 ) 12 2 5 y d x d y = 109 5 \displaystyle Area(S)=Area(S_1)+Area(S_2)=\int_{0}^{\frac{17}{5}} \int_{6}^{12-\frac{2}{5}y} dxdy+\int_{\frac{17}{5}}^{5} \int_{\frac{5}{2}(y-1)}^{12-\frac{2}{5}y} dxdy=\frac{109}{5} ;

A r e a ( P ) = 10 12 2 = 60 \displaystyle Area(P)=\frac{10 \cdot 12}{2}=60 ;

Eventually

P ( S ) = A r e a ( S ) A r e a ( P ) = 109 5 60 = 109 300 = p q p + q = 409 \displaystyle \mathbb{P}(S)=\frac{Area(S)}{Area(P)}=\frac{109}{5\cdot 60}=\frac{109}{300}=\frac{p}{q} \hspace{5pt} \Longrightarrow \hspace{5pt} p+q=\boxed{409}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...