Problem 1

Algebra Level 4

( x 2010 + 1 ) ( 1 + x 2 + x 4 + . . . + x 2008 ) = 2010 x 2009 \big(x^{2010}+1)(1+x^{2}+x^{4}+...+x^{2008})=2010x^{2009}

Let S S denote the set of all real values of x x such that they satisfy the equation above, then the number of elements in S S is?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Abdelhamid Saadi
Oct 29, 2016

I will use AM-GM to solve this problem: ( x 2010 + 1 ) ( 1 + x 2 + x 4 + . . . + x 2008 ) = 1 + x 2 + x 4 + . . . + x 4018 2010 × 1 × x 2 × x 4 × . . . × x 4018 2010 ( A M G M ) 2010 × x 0 + 2 + 4 + . . . + 4018 2010 2010 × x 2010 × 2009 2010 2010 × x 2009 2010 × x 2009 \begin{matrix} \big(x^{2010}+1)(1+x^{2}+x^{4}+...+x^{2008}) & = & 1+x^{2}+x^{4}+...+x^{4018}\\ & \geq & 2010\times \sqrt [{2010}]{1 \times x^{2}\times x^{4}\times...\times x^{4018}} & \text (AM-GM)\\ & \geq & 2010\times \sqrt [{2010}]{x^{0 + 2 + 4 + ... + 4018}}\\ & \geq & 2010\times\sqrt [{2010}]{x^{2010 \times 2009}}\\ & \geq & 2010\times {|x|}^{2009}\\ & \geq & 2010\times {x}^{2009}\\ \end{matrix}

The equality needs 1 = x 2 = x 4 = . . . = x 4018 1 = x^{2} = x^{4}=...= x^{4018}

Then x is equal to + 1 +1 or to 1 -1 .

Only + 1 +1 meets the equality

Nicely Done. : ) :)

Keshav Tiwari - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...