Problem 17

Algebra Level 3

8 x 2 12 x 39 + 2 x 2 3 x 15 2 x 2 3 x + 20 = 0 \sqrt { { 8x }^{ 2 }-12x-39 } +\sqrt { { 2x }^{ 2 }-3x-15 } -\sqrt { { 2x }^{ 2 }-3x+20 } =0

Solve the equation, the roots of the above equation can be represented as A ± B 4 , gcd ( A , B ) = 1 \frac { A\pm \sqrt { B } }{ 4 } ,\text{gcd}(A,B)=1 .

Find the value of A + B A+B .


The answer is 140.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 10, 2015

8 x 2 12 x 39 + 2 x 2 3 x 15 2 x 2 3 x + 20 = 0 \sqrt{8x^2-12x-39} + \sqrt{2x^2-3x-15} - \sqrt{2x^2-3x+20} = 0

8 x 2 12 x 39 = 2 x 2 3 x + 20 2 x 2 3 x 15 \Rightarrow \sqrt{8x^2-12x-39} = \sqrt{2x^2-3x+20} - \sqrt{2x^2-3x-15}

8 x 2 12 x 39 = 4 x 2 6 x + 5 2 ( 2 x 2 3 x + 20 ) ( 2 x 2 3 x 15 ) \quad 8x^2-12x-39 = 4x^2-6x+5 -2\sqrt{(2x^2-3x+20)(2x^2-3x-15)}

4 x 2 6 x 44 = 2 ( 2 x 2 3 x + 20 ) ( 2 x 2 3 x 15 ) \quad 4x^2-6x-44 = -2\sqrt{(2x^2-3x+20)(2x^2-3x-15)}

2 x 2 3 x 22 = ( 2 x 2 3 x + 20 ) ( 2 x 2 3 x 15 ) \quad 2x^2-3x-22 = -\sqrt{(2x^2-3x+20)(2x^2-3x-15)}

Now, let y = 2 x 2 3 x 22 y = 2x^2-3x-22 then, we have:

y = ( y + 42 ) ( y + 7 ) y 2 = y 2 + 49 y + 294 y = -\sqrt{(y+42)(y+7)} \quad \Rightarrow y^2 = y^2+49y+294

0 = 49 y + 294 49 y = 294 y = 6 \Rightarrow 0 = 49y+294 \quad \Rightarrow 49y = -294 \quad \Rightarrow y = -6

2 x 2 3 x 22 = 6 2 x 2 3 x 16 = 0 \Rightarrow 2x^2-3x-22 = -6 \quad \Rightarrow 2x^2-3x-16 =0

x = 3 ± 3 2 4 ( 2 ) ( 16 ) 4 = 3 ± 137 4 \Rightarrow x = \dfrac {3\pm \sqrt{3^2-4(2)(-16)}}{4} = \dfrac {3\pm \sqrt{137}}{4}

A + B = 3 + 137 = 140 \Rightarrow A+B = 3+137 = \boxed{140}

Same approach here and nice solution sir,upvoted

Utkarsh Bansal - 6 years, 3 months ago

Log in to reply

It's a little overrated. 140-150 points would be fine.

Rajdeep Dhingra - 6 years, 2 months ago

Log in to reply

I too agree with you. I first set it to Level 4

Utkarsh Bansal - 6 years, 2 months ago

Yep, same approach kudos to you good sir.

Jesus Ulises Avelar - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...