Derivative on the Head.

Calculus Level 3

Find the solution of the differential equation y d = y x + ϕ ( y / x ) ϕ d ( y / x ) y^d=\dfrac{y}{x}+\dfrac{\phi(y/x)}{\phi^d (y/x)} Note : k k is any constant.

y d y^d represents derivative of y y with respect to x x .


# Try the set : Practice Problems for JEE-Mains and Give a final Boost to your JEE_preparation. All the best!
ϕ ( y / x ) = k x \phi(y/x)=kx ϕ ( y / x ) = k y \phi(y/x)=ky y ϕ ( y / x ) = k y\cdot\phi(y/x)=k x ϕ ( y / x ) = k x\cdot\phi(y/x)=k

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Mar 27, 2015

y = v x y=vx

y d = v + x v d y^d=v+x v^d

v + x v d = v + ϕ ( v ) ϕ d ( v ) v+x v^d=v+\dfrac{\phi(v)}{\phi^{d}(v)}

ϕ d ( v ) d v ϕ ( v ) = d x x \dfrac{\phi^{d}(v) dv}{\phi(v)}=\dfrac{dx}{x}

l n ( ϕ ( v ) ) = l n x + l n k ln(\phi(v))=ln x+ln k

ϕ ( v ) = k x \phi(v)=kx

ϕ ( y x ) = k x \phi(\dfrac{y}{x})=kx

Andrea Palma
Mar 28, 2015

y y x = ϕ ( y x ) ϕ ( y x ) y^\prime - \dfrac{y}{x} = \dfrac{\phi\left(\dfrac{y}{x}\right)}{\phi^\prime\left(\dfrac{y}{x}\right)}

x y y x = ϕ ( y x ) ϕ ( y x ) \dfrac{xy^\prime - y}{x} = \dfrac{\phi\left(\dfrac{y}{x}\right)}{\phi^\prime\left(\dfrac{y}{x}\right)}

x x y y x 2 = ϕ ( y x ) ϕ ( y x ) x\dfrac{xy^\prime - y}{x^2} = \dfrac{\phi\left(\dfrac{y}{x}\right)}{\phi^\prime\left(\dfrac{y}{x}\right)}

x = ϕ ( y x ) ϕ ( y x ) ( x y y x 2 ) x = \dfrac{\phi\left(\dfrac{y}{x}\right)}{\phi^\prime\left(\dfrac{y}{x}\right) \left( \dfrac{xy^\prime - y}{x^2} \right)}

1 x = ϕ ( y x ) ( x y y x 2 ) ϕ ( y x ) \dfrac{1}{x} = \dfrac{\phi^\prime\left(\dfrac{y}{x}\right) \left( \dfrac{xy^\prime - y}{x^2} \right)}{\phi\left(\dfrac{y}{x}\right)}

1 x = [ ϕ ( y x ) ] ϕ ( y x ) \dfrac{1}{x} = \dfrac{\left[\phi\left(\dfrac{y}{x}\right)\right]^\prime}{\phi\left(\dfrac{y}{x}\right)}

[ ln ( x ) ] = [ ln ( ϕ ( y x ) ) ] \left[ \ln (x) \right]^\prime = \left[\ln\left(\phi\left(\dfrac{y}{x}\right)\right)\right]^\prime

[ ln ( ϕ ( y x ) ) ln ( x ) ] = 0 \left[ \ln\left(\phi\left(\dfrac{y}{x}\right)\right) - \ln (x) \right]^\prime = 0

ϕ ( y x ) 1 x = k \phi\left(\dfrac{y}{x}\right) \dfrac{1}{x} = k

ϕ ( y x ) = k x \phi\left(\dfrac{y}{x}\right) = kx

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...