Déjà vu

Calculus Level 3

a b a + 1 2 ( a b a ) 2 + 1 3 ( a b a ) 3 + \dfrac{a-b}{a}+\dfrac{1}{2} \left(\dfrac{a-b}{a} \right)^2+\dfrac{1}{3} \left(\dfrac{a-b}{a} \right)^3+ \ldots

If 0 < b < a 0 < b < a , the value of the above series is?

Try the set: Practice Problems for JEE-Mains and Give a final Boost to your JEE_preparation. All the best!
None of the given choices ln ( b a ) \ln \left( \frac{b}{a}\right) ln ( a b ) \ln \left( \frac{a}{b}\right) 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Mar 29, 2015

l n ( 1 x ) = x + x 2 2 + x 3 3 + . . . . . . -ln(1-x)=x+\frac{x^2}{2}+\frac{x^3}{3}+......

here x = a b a x=\frac{a-b}{a}

= l n ( b a ) = l n ( a b ) -ln(\frac{b}{a})=ln(\frac{a}{b})

For to proove it ....

f ( x ) = k = 1 x k k = x + x 2 2 + . . . . . . . . d i f f . w . r . t x f ( x ) = k = 1 x k 1 = 1 + x + x 2 + x 3 + . . . . . . . ( G P ) f ( x ) = 1 1 x i n t . w . r . t x f ( x ) = f ( x ) d x = 1 1 x d x = ln ( 1 x ) + c f ( 0 ) = 0 f ( x ) = ln ( 1 x ) f ( a b a ) = ln a b \displaystyle{f\left( x \right) =\sum _{ k=1 }^{ \infty }{ \cfrac { { x }^{ k } }{ k } } =x+\cfrac { { x }^{ 2 } }{ 2 } +........\\ diff.\quad w.r.t\quad x\\ f^{ ' }\left( x \right) =\sum _{ k=1 }^{ \infty }{ { x }^{ k-1 } } =1+x+{ x }^{ 2 }+{ x }^{ 3 }+.......\quad (GP)\\ f^{ ' }\left( x \right) =\cfrac { 1 }{ 1-x } \\ int.\quad w.r.t\quad x\\ f(x)=\int { f^{ ' }\left( x \right) dx } =\int { \cfrac { 1 }{ 1-x } dx } =-\ln { (1-x) } +c\\ f(0)=0\\ f(x)=-\ln { (1-x) } \\ \boxed { f(\cfrac { a-b }{ a } )=\ln { \cfrac { a }{ b } } } }

Deepanshu Gupta - 6 years, 2 months ago

Log in to reply

Did it the same way ! Learnt so much on brilliant. Thanks !

Keshav Tiwari - 6 years, 2 months ago

Log in to reply

i learnt in fiitjee and also on brilliant but fiitjee more

Shashank Rustagi - 6 years, 2 months ago

@Sandeep Bhardwaj I have added the condition that 0 < b < a 0 < b < a .

Calvin Lin Staff - 6 years, 2 months ago

Log in to reply

Thanks sir.

Sandeep Bhardwaj - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...