f ( 1 ) = 2 , f ( 2 ) = 4 , f ( 3 ) = 1 2 , f ( 4 ) = 2 6 2 1 4 8
Determine f ( 1 2 0 0 1 ) mod 2 0 1 4
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This is not necessarily correct. Consider f ( x ) = 4 3 6 8 7 x 3 − 2 6 2 1 1 9 x 2 + 4 8 0 5 5 0 x − 2 6 2 1 1 6 . Then, f ( 1 ) = 2 , f ( 2 ) = 4 , f ( 3 ) = 1 2 , f ( 4 ) = 2 6 2 1 4 8 , and f ( 1 2 0 0 1 ) = 7 5 4 7 2 2 6 4 6 9 6 4 7 6 0 0 2 , which is congruent to 1 2 7 8 ( m o d 2 0 1 4 ) .
Problem Loading...
Note Loading...
Set Loading...
Just note that f ( n ) = n f ( n − 1 ) − ( n − 1 ) + n and f ( 1 ) = 2 . and so by Euler's Theorem, we have 1 2 0 0 1 1 2 0 0 0 . . . 2 1 + 1 2 0 0 1 ≡ 1 2 0 0 2 ≡ 1 9 3 2 ( m o d 2 0 1 4 ) .