Problem 30

Algebra Level 4

( a 2 + b 2 + c 2 ) 3 K ( a 3 + b 3 + c 3 ) 2 (a^2+b^2+c^2)^3\leq K(a^3+b^3+c^3)^2

Given that a , b a,b and c c are positive reals and K K is the minimum value satisfy this inequality holds. Find K K .


This problem was in Singapore Mathematical olympiad.
This problem is in this Set .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Manuel Kahayon
Mar 5, 2016

DIRECT APPLICATION OF POWER MEAN INEQUALITY

a 2 + b 2 + c 2 3 a 3 + b 3 + c 3 3 3 \sqrt{\frac{a^2+b^2+c^2}{3}} \leq \sqrt[3]{\frac{a^3+b^3+c^3}{3}}

( a 2 + b 2 + c 2 3 ) 6 ( a 3 + b 3 + c 3 3 3 ) 6 (\sqrt{\frac{a^2+b^2+c^2}{3}})^6 \leq (\sqrt[3]{\frac{a^3+b^3+c^3}{3}})^6

( a 2 + b 2 + c 2 ) 3 27 ( a 3 + b 3 + c 3 ) 2 9 \frac{(a^2+b^2+c^2)^3}{27} \leq \frac{(a^3+b^3+c^3)^2}{9}

( a 2 + b 2 + c 2 ) 3 3 ( a 3 + b 3 + c 3 ) 2 (a^2+b^2+c^2)^3 \leq \boxed{3}(a^3+b^3+c^3)^2

So, our answer is 3 \boxed{3}

Harsh Khatri
Mar 5, 2016

Applying A . M . G . M . A.M. \geq G.M. :-

a 3 + b 3 + c 3 3 ( a b c ) 3 3 a^3 + b^3 + c^3 \geq 3 (abc)^{\frac{3}{3}}

( a 3 + b 3 + c 3 ) 2 9 ( a b c ) 2 \displaystyle \Rightarrow (a^3 + b^3 + c^3)^2 \geq 9 (abc)^2

( a 3 + b 3 + c 3 ) m i n 2 = 9 ( a b c ) 2 e q u a t i o n { 1 } \displaystyle \Rightarrow (a^3 + b^3 + c^3)^2_{min} = 9 (abc)^2 \ldots equation\{1\}

and

a 2 + b 2 + c 2 3 ( a b c ) 2 3 a^2 + b^2 + c^2 \geq 3 (abc)^{\frac{2}{3}}

( a 2 + b 2 + c 2 ) 3 27 ( a b c ) 2 e q u a t i o n { 2 } \displaystyle \Rightarrow (a^2 + b^2 + c^2)^{3} \geq 27 (abc)^2 \ldots equation\{2\}

Equality occurs when a = b = c a=b=c in both the cases.

Now, we write the given inequality as:

K × ( a 3 + b 3 + c 3 ) 2 ( a 2 + b 2 + c 2 ) 3 27 ( a b c ) 2 from equation2 K \times (a^3 + b^3 + c^3)^2 \geq (a^2 + b^2 + c^2)^3 \geq 27 (abc)^2 \ldots \text{ from equation{2}}

K × ( a 3 + b 3 + c 3 ) 2 ( a 2 + b 2 + c 2 ) 3 3 × ( a 3 + b 3 + c 3 ) m i n 2 from equation1 \displaystyle \Rightarrow K \times (a^3 + b^3 + c^3)^2 \geq (a^2 + b^2 + c^2)^3 \geq 3\times (a^3 + b^3 + c^3)^2_{min} \ldots \text{ from equation{1}}

K × ( a 3 + b 3 + c 3 ) 2 3 × ( a 3 + b 3 + c 3 ) m i n 2 \displaystyle \Rightarrow K \times (a^3 + b^3 + c^3)^2 \geq 3\times (a^3 + b^3 + c^3)^2_{min}

Equality occurs for a = b = c a=b=c , substituting:

K × ( 3 a 3 ) 2 = 3 × ( 9 × a 2 × a 2 × a 2 ) K\times (3a^3)^2 = 3\times (9\times a^2 \times a^2 \times a^2)

K × 9 a 6 = 3 × 9 a 6 \displaystyle \Rightarrow K\times 9a^6 = 3\times 9 a^6

K = 3 \displaystyle \Rightarrow \boxed{ K= 3}

We know A.M of mth powers \ge mth powers of A.M.

a 2 + b 2 + c 2 3 ( a + b + c ) 2 9 \frac{a^2+b^2+c^2}{3}\ge\frac{(a+b+c)^2}{9}

or, ( a 2 + b 2 + c 2 ) 3 ( a + b + c ) 6 81 (a^2+b^2+c^2)^3\ge\frac{(a+b+c)^6}{81}

Similarly, ( a 3 + b 3 + c 3 ) 2 ( a + b + c ) 6 27 (a^3+b^3+c^3)^2\ge\frac{(a+b+c)^6}{27}

K ( a + b + c ) 6 27 ( a + b + c ) 6 81 K\ge\frac{\frac{(a+b+c)^6}{27}}{\frac{(a+b+c)^6}{81}}

Therefore, K 3 K\ge3

Son Nguyen
Mar 6, 2016

We have four solution:Two solution using AM-GM and power mean inequality.And 2 another is Jensen and Holder.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...