m → ∞ lim ( 2 3 + 1 2 3 − 1 ⋅ 3 3 + 1 3 3 − 1 ⋅ 4 3 + 1 4 3 − 1 ⋯ m 3 + 1 m 3 − 1 ) = ?
Give your answer to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Level 5!!!?!??!
Log in to reply
^Exactly .
This question is far above level 3
Using the fact that
andWe can rewrite the above as :
Now we have two infiite products
Everything except for the 2 cancels out nicely leaving
For the second :
Everything cancels out very nicely again, leaving
Problem Loading...
Note Loading...
Set Loading...
a n = i = 2 ∏ n i 3 + 1 i 3 − 1 = i = 2 ∏ n ( i + 1 ) ( i 2 − i + 1 ) ( i − 1 ) ( i 2 + i + 1 ) = 3 ˙ 3 1 ˙ 7 ˙ 4 ˙ 7 2 ˙ 1 3 ˙ 5 ˙ 1 3 3 ˙ 2 1 ˙ 6 ˙ 2 1 4 ˙ 3 1 ˙ 7 ˙ 3 1 5 ˙ 4 3 ˙ . . . ˙ ( n + 1 ) ( n 2 − n + 1 ) ( n − 1 ) ( n 2 + n + 1 ) = ( 3 ˙ 3 ˙ 4 2 ˙ 1 3 ) ˙ 5 ˙ 1 3 3 ˙ 2 1 ˙ 6 ˙ 2 1 4 ˙ 3 1 ˙ 7 ˙ 3 1 5 ˙ 4 3 ˙ . . . ˙ ( n + 1 ) ( n 2 − n + 1 ) ( n − 1 ) ( n 2 + n + 1 ) = ( 3 ˙ 4 ˙ 5 2 ˙ 2 1 ) ˙ 6 ˙ 2 1 4 ˙ 3 1 ˙ 7 ˙ 3 1 5 ˙ 4 3 ˙ . . . ˙ ( n + 1 ) ( n 2 − n + 1 ) ( n − 1 ) ( n 2 + n + 1 ) = ( 3 ˙ 5 ˙ 6 2 ˙ 3 1 ) ˙ 7 ˙ 3 1 5 ˙ 4 3 ˙ . . . ˙ ( n + 1 ) ( n 2 − n + 1 ) ( n − 1 ) ( n 2 + n + 1 ) = 3 n ( n + 1 ) 2 ( n 2 + n + 1 )
⇒ n → ∞ lim a n = n → ∞ lim 3 n ( n + 1 ) 2 ( n 2 + n + 1 ) = n → ∞ lim 3 2 ( 1 + n ( n + 1 ) 1 ) = 3 2