Problem 4

Calculus Level 4

lim m ( 2 3 1 2 3 + 1 3 3 1 3 3 + 1 4 3 1 4 3 + 1 m 3 1 m 3 + 1 ) = ? \large \lim_{m\to \infty}\left( \frac{2^3 - 1}{2^3 + 1} \cdot\frac{3^3 - 1}{3^3 + 1} \cdot\frac{4^3 - 1}{4^3 + 1} \cdots \frac{m^3 - 1}{m^3 + 1}\right) = \ ?

Give your answer to 3 decimal places.


The answer is 0.667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

a n = i = 2 n i 3 1 i 3 + 1 = i = 2 n ( i 1 ) ( i 2 + i + 1 ) ( i + 1 ) ( i 2 i + 1 ) = 1 ˙ 7 3 ˙ 3 ˙ 2 ˙ 13 4 ˙ 7 ˙ 3 ˙ 21 5 ˙ 13 ˙ 4 ˙ 31 6 ˙ 21 ˙ 5 ˙ 43 7 ˙ 31 ˙ . . . ˙ ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 n + 1 ) = ( 2 ˙ 13 3 ˙ 3 ˙ 4 ) ˙ 3 ˙ 21 5 ˙ 13 ˙ 4 ˙ 31 6 ˙ 21 ˙ 5 ˙ 43 7 ˙ 31 ˙ . . . ˙ ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 n + 1 ) = ( 2 ˙ 21 3 ˙ 4 ˙ 5 ) ˙ 4 ˙ 31 6 ˙ 21 ˙ 5 ˙ 43 7 ˙ 31 ˙ . . . ˙ ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 n + 1 ) = ( 2 ˙ 31 3 ˙ 5 ˙ 6 ) ˙ 5 ˙ 43 7 ˙ 31 ˙ . . . ˙ ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 n + 1 ) = 2 ( n 2 + n + 1 ) 3 n ( n + 1 ) \begin{aligned} a_n & = \displaystyle \prod_{i=2}^n {\frac{i^3-1}{i^3+1}} = \prod_{i=2}^n {\frac{(i-1)(i^2+i+1)}{(i+1)(i^2-i+1)}} \\ & = \dfrac{1\dot{}7}{3\dot{}3} \dot{} \dfrac{2\dot{}13}{4\dot{}7} \dot{} \dfrac{3\dot{}21}{5\dot{}13} \dot{} \dfrac{4\dot{}31}{6\dot{}21} \dot{} \dfrac{5\dot{}43}{7\dot{}31} \dot{} ... \dot{} \dfrac{(n-1)(n^2+n+1)}{(n+1)(n^2-n+1)} \\ & = \left( \dfrac{2\dot{}13}{3\dot{}3\dot{}4} \right) \dot{} \dfrac{3\dot{}21}{5\dot{}13} \dot{} \dfrac{4\dot{}31}{6\dot{}21} \dot{} \dfrac{5\dot{}43}{7\dot{}31} \dot{} ... \dot{} \dfrac{(n-1)(n^2+n+1)}{(n+1)(n^2-n+1)} \\ & = \left( \dfrac{2\dot{}21}{3\dot{}4\dot{}5} \right) \dot{} \dfrac{4\dot{}31}{6\dot{}21} \dot{} \dfrac{5\dot{}43}{7\dot{}31} \dot{} ... \dot{} \dfrac{(n-1)(n^2+n+1)}{(n+1)(n^2-n+1)} \\ & = \left( \dfrac{2\dot{}31}{3\dot{}5\dot{}6} \right) \dot{} \dfrac{5\dot{}43}{7\dot{}31} \dot{} ... \dot{} \dfrac{(n-1)(n^2+n+1)}{(n+1)(n^2-n+1)} \\ & = \dfrac{2(n^2+n+1)}{3n(n+1)} \end{aligned}

lim n a n = lim n 2 ( n 2 + n + 1 ) 3 n ( n + 1 ) = lim n 2 3 ( 1 + 1 n ( n + 1 ) ) = 2 3 \Rightarrow \displaystyle \lim_{n \to \infty} {a_n} = \lim_{n \to \infty} {\dfrac{2(n^2+n+1)}{3n(n+1)}} = \lim_{n \to \infty} {\dfrac{2}{3} \left( 1 + \dfrac{1}{n(n+1)} \right)} = \boxed {\dfrac{2}{3}}

Level 5!!!?!??!

Kartik Sharma - 6 years, 2 months ago

Log in to reply

^Exactly .

Keshav Tiwari - 6 years, 2 months ago

This question is far above level 3

Akhil Bansal - 5 years, 8 months ago
Deb Sen
Apr 25, 2015

Using the fact that and

We can rewrite the above as :

Now we have two infiite products

Everything except for the 2 cancels out nicely leaving

For the second :

Everything cancels out very nicely again, leaving

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...