Problem 4: Large factorials

Level 2

132 ! + 131 ! 128 ! 128 ! x (mod 137) \large \frac{-132!+131!-128!}{128!} \equiv x \text{ (mod 137)}

Find x x , where 0 x 136 0 \le x \le 136 .


The answer is 38.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 25, 2018

128 ! + 131 ! 128 ! 128 ! 128 ! ( 129 130 131 132 + 129 130 131 1 ) 128 ! (mod 137) 129 130 131 ( 132 + 1 ) 1 (mod 137) 129 130 13 1 2 1 (mod 137) ( 8 ) ( 7 ) ( 6 ) 2 1 (mod 137) 56 36 1 (mod 137) 2017 (mod 137) 99 (mod 137) 38 (mod 137) \begin{aligned} \frac {-128!+131!-128!}{128!} & \equiv \frac {128!(-129\cdot 130 \cdot 131 \cdot 132 + 129 \cdot 130 \cdot 131 - 1)}{128!} \text{ (mod 137)} \\ & \equiv 129\cdot 130 \cdot 131 (-132+1) - 1 \text{ (mod 137)} \\ & \equiv - 129\cdot 130 \cdot 131^2 - 1 \text{ (mod 137)} \\ & \equiv -(-8)(-7)(-6)^2 - 1 \text{ (mod 137)} \\ & \equiv -56\cdot 36 - 1 \text{ (mod 137)} \\ & \equiv - 2017 \text{ (mod 137)} \\ & \equiv - 99 \text{ (mod 137)} \\ & \equiv \boxed{38} \text{ (mod 137)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...