Two Plus Six Plus Another Then Plus Another

Algebra Level 4

2 + 6 4 100 + 2 + 2 × 6 4 99 + 2 + 3 × 6 4 98 + + 2 + 100 × 6 4 \frac {2+6}{4^{100}} + \frac {2+2 \times 6}{4^{99}} + \frac {2+ 3 \times 6}{4^{98}} + \cdots + \frac {2+ 100 \times 6}{4}

Evaluate the above expression.


The answer is 200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Gautam Sharma
Mar 7, 2015

Here we observe that the general term is n = 1 100 2 + 6 n 4 101 n \quad\displaystyle\sum_{n=1}^{100}\frac{2+6n}{4^{101-n}}

Hence it can be rewritten as : 1 4 101 ( 2 n = 1 100 4 n + 6 n = 1 100 n 4 n ) :\quad\frac{1}{4^{101}} \displaystyle(2\sum_{n=1}^{100}4^n+6\sum_{n=1}^{100}n4^n)

1 s t 1^{st} term is a simple GP and 2 n d 2^{nd} term is Arithmetico-Geometric progression Hence applying respective formulas of GP and AGP we get

: 1 4 101 ( 8 ( 4 100 1 ) 3 + 8 ( 1 + 299 × 4 100 ) 3 ) \displaystyle:\quad\frac{1}{4^{101}}(\frac{8(4^{100}-1)}{3}+\frac{8(1+299\times4^{100})}{3}) On simplifying answer is 200 200


Sum of AGP of the form : k = 1 n [ a + ( n 1 ) d ] r k 1 = a + [ a + d ] r + [ a + 2 d ] r 2 . . . . . + [ a + ( n 1 ) d ] r n 1 \displaystyle:\sum_{k=1}^{n}[a+(n-1)d]r^{k-1}=a+[a+d]r+[a+2d]r^2.....+[a+(n-1)d]r^{n-1}
is S n = a [ a + ( n 1 ) d ] r n 1 r + d r ( 1 r n 1 ) ( 1 r ) 2 \displaystyle S_n=\frac{a-[a+(n-1)d]r^n}{1-r}+\frac{dr(1-r^{n-1})}{(1-r)^2}

On substituting given values we can compute the above sum.


Can you please explain step 2. How did you simplify that ?

Ankith A Das - 6 years, 3 months ago

Log in to reply

After step 1 we get n = 1 100 ( 2 + 6 n ) 4 n 4 101 \rightarrow\quad\displaystyle\sum_{n=1}^{100}\frac{(2+6n)4^n}{4^{101}} n = 1 100 2 ( 4 n ) + 6 n ( 4 n ) 4 101 \rightarrow\quad\displaystyle\sum_{n=1}^{100}\frac{2(4^n)+6n(4^n)}{4^{101}} Taking out 1 4 101 \frac{1}{4^{101}} common and sigma inside the brackets. : 1 4 101 ( n = 1 100 2 ( 4 n ) + n = 1 100 ( 6 n ) 4 n ) :\quad\frac{1}{4^{101}} \displaystyle(\sum_{n=1}^{100}2(4^n)+\sum_{n=1}^{100}(6n)4^n) taking all constant factors outside the sigma and we get the desired result.

Please comment if any doubt.

Gautam Sharma - 6 years, 3 months ago

Nice solution Gautam Sharma , upvoted

Utkarsh Bansal - 6 years, 3 months ago
Aareyan Manzoor
Mar 8, 2015

Here we observe that the general term is n = 1 100 2 + 6 n 4 101 n \quad\displaystyle\sum_{n=1}^{100}\frac{2+6n}{4^{101-n}} Hence it can be rewritten as : 1 4 101 ( 2 n = 1 100 4 n + 6 n = 1 100 n 4 n ) :\quad\frac{1}{4^{101}} \displaystyle(2\sum_{n=1}^{100}4^n+6\sum_{n=1}^{100}n4^n) we know that n = 1 100 x n = x 101 x x 1 \sum_{n=1}^{100}x^n= \dfrac{x^{101}-x}{x-1} deriving both sides, and multiplying by x, n = 1 100 n x n = 100 x 102 101 x 101 + x ( x 1 ) 2 \sum_{n=1}^{100}nx^n=\dfrac{100x^{102}-101x^{101}+x}{(x-1)^2} entering x = 4 x=4 , 1 4 101 ( 2 4 101 1 3 + 6 100 4 102 101 4 101 + 4 9 \dfrac{1}{4^{101}}(2*\dfrac{4^{101}-1}{3}+6*\dfrac{100*4^{102}-101*4^{101}+4}{9} upon some simplificaton, the answer is 200 \boxed{200}

Nice solution Aareyan sir , upvoted

Utkarsh Bansal - 6 years, 3 months ago

Nice solution! There is a little typo in the formula for GP. It should be (x^101 - x )/ (x-1) and the same typo in the final formula with numbers. Thanks!

M Dub - 5 years, 9 months ago
Faisal Basha
Mar 7, 2015

pattern tn = (2+i*6)/(4^(101-i)) i= 1,2,3....,100

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...