Problem 6: Symmetrical Properties of Roots

Algebra Level 3

Suppose the equation x 2 + ( 4 a ) x ( a + 1 ) = 0 x^2+(4-a)x-(a+1)=0 has two solutions which differ by 5 5 . Find the sum of all possible values of a a .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

William Isoroku
Dec 29, 2014

Let the roots be r r and r + 5 r+5

By Vieta the genius, we have r + r + 5 = ( 4 a ) r+r+5=-(4-a) and r ( r + 5 ) = ( a + 1 ) r(r+5)=-(a+1)

Rearrange theses two equations to get a = 9 + 2 r a=9+2r and a = r 2 5 r 1 a=-r^2-5r-1 and solve for r r , which is 2 , 5 -2,-5

Using these two values of r r , solve for a a by substitution. It turns out a = 5 , 1 a=5,-1 so the sum is 4 \boxed{4}

Kartik Sharma
Jul 24, 2014

We know α + β \alpha +\beta = a-4

α β \alpha -\beta = 5

α β \alpha \beta = -(a+1)

Now, we will evaluate

( α β ) 2 = α 2 + β 2 2 α β 5 2 = ( α + β ) 2 2 α β 2 α β 25 = ( a 4 ) 2 4 ( ( a + 1 ) ) 25 = a 2 + 16 8 a + 4 a + 4 0 = a 2 4 a + 20 25 0 = a 2 4 a 5 0 = a 2 5 a + a 5 0 = ( a + 1 ) ( a 5 ) { (\alpha -\beta ) }^{ 2 }\quad =\quad { \alpha }^{ 2 }{ +\beta }^{ 2 }-2\alpha \beta \\ \quad \quad \quad { 5 }^{ 2 }\quad =\quad { (\alpha +\beta ) }^{ 2 }-2\alpha \beta -2\alpha \beta \quad \\ \quad \quad 25\quad \quad =\quad { (a-4) }^{ 2 }\quad -\quad 4(-(a+1))\\ \quad \quad 25\quad \quad =\quad { a }^{ 2 }+16-8a+4a+4\\ \quad \quad 0\quad \quad \quad =\quad { a }^{ 2 }-4a+20-25\\ \quad \quad 0\quad \quad \quad =\quad { a }^{ 2 }-4a-5\\ \quad \quad 0\quad \quad \quad =\quad { a }^{ 2 }-5a+a-5\\ \quad \quad 0\quad \quad \quad =\quad (a+1)(a-5)\quad

Hence,

a = -1 or 5

Therefore, Sum = 5-1 = 4

but difference of the roots is no 5

Kandarp Kakkad - 5 years, 11 months ago
Ankush Gogoi
Jul 22, 2014

Let the roots be k & k+5. Now sum of roots= -(4-a). So k+(k+5)=a-4. 2k+5=a-4. So k=(a-9)/2. Again product of roots=-(a+1). So k*(k+5)=-a-1. k^2 +5k= -a-1. Substituting the value of k here, we get a quadratic equation in a, a^2 -4a -5=0 (after simplyfying)...so sum of possible values of k=4.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...