My Problem Number Eight

Algebra Level 5

What is the area of the convex quadrilateral whose vertices are 1 , i , ω , ω 2 1,i,\omega ,{ \omega }^{ 2 } , where ω 1 \omega \neq 1 is a complex cube root of unity?


The answer is 1.616.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sujoy Roy
Mar 7, 2015

In imaginary plane, four vertices of the quadrilateral are A ( 1 , 0 ) , B ( 0 , 1 ) , C ( 1 2 , 3 2 ) A\equiv (1,0), B\equiv (0,1), C\equiv (-\frac{1}{2},\frac{\sqrt{3}}{2}) and D ( 1 2 , 3 2 ) D\equiv (-\frac{1}{2},-\frac{\sqrt{3}}{2}) respectively. Let the line C D CD cut the x x- axis at the point E E .

The required area = A B C D =|ABCD|

= A B O + B C E O + E D A =|ABO|+|BCEO|+|EDA|

= 1 2 1 1 + 1 2 ( 1 + 3 2 ) 1 2 + 1 2 3 2 3 2 =\frac{1}{2}*1*1+\frac{1}{2}*(1+\frac{\sqrt{3}}{2})*\frac{1}{2}+\frac{1}{2}*\frac{3}{2}*\frac{\sqrt{3}}{2}

= 3 4 + 3 2 = 1.616 =\frac{3}{4}+\frac{\sqrt{3}}{2}=\boxed{1.616} .

Isn't it overrated? I mean 270 points for this easy question.

Purushottam Abhisheikh - 6 years, 3 months ago

Log in to reply

Sir but I first set it to level 3

Utkarsh Bansal - 6 years, 3 months ago

Nice solution Sujoy , upvoted

Utkarsh Bansal - 6 years, 3 months ago

A ( 1 , 0 ) , B ( 0 , 1 ) , C ( 1 2 , 3 2 ) , D ( 1 2 , 3 2 ) a n d O ( 0 , 0 ) A\equiv (1,0), B\equiv (0,1), C\equiv (-\dfrac{1}{2},\dfrac{\sqrt{3}}{2}), ~D\equiv (-\dfrac{1}{2},-\dfrac{\sqrt{3}}{2})~and~O\equiv (0,0) .

T h e r e q u i r e d a r e a = A B C D = A B O + B C O + C D O + D A O = 1 2 1 1 + 1 2 1 2 1 + 1 2 2 3 2 1 2 + 2 1 2 3 2 1 2 The ~required~ area ~=|ABCD| \\ =~~~|ABO|~~~+~~~|BCO|~~~~~+~~~~~~~|CDO|~~~~~~~~~~~~~~+~~~~~~~~|DAO| \\ =\dfrac{1}{2}*1*1~~+~~\dfrac{1}{2}*\dfrac{1}{2}*1~~+~~\dfrac{1}{2}*2*\dfrac{\sqrt{3}}{2}*\dfrac{1}{2}~~+~~2*\dfrac{1}{2}*\dfrac{\sqrt{3}}{2}*\dfrac{1}{2}

= 1 2 + 1 4 + 3 4 + 3 4 =\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{\sqrt{3}}{4} +\dfrac{\sqrt{3}}{4}

= 3 4 + 3 2 = 1.616 =\dfrac{3}{4}+\dfrac{\sqrt{3}}{2}=\large \boxed{\color{#3D99F6}{~~~1.616~~~}}

Nice solution Niranjan sir, upvoted

Utkarsh Bansal - 6 years, 3 months ago
Mayank Singh
Mar 19, 2015

The shrortest way I found was that of using 1/2 a b*sinΘ

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...