Problem 9

Geometry Level 4

The number of real solutions of the equation 1 + cos 2 x = 2 sin 1 ( sin x ) \sqrt { 1+\cos { 2x } } =\sqrt { 2 } \sin ^{ -1 }{ \left( \sin { x } \right) } where π x π -\pi \le x\le \pi .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aniket Verma
Mar 8, 2015

1 + cos 2 x = 2 sin 1 ( sin x ) \sqrt { 1+\cos { 2x } } =\sqrt { 2 } \sin ^{ -1 }{ \left( \sin { x } \right) }

\implies 2 c o s x = 2 s i n 1 ( s i n x ) \sqrt{2}|cosx| = \sqrt{2}sin^{-1}(sinx)

\implies c o s x = s i n 1 ( s i n x ) |cosx| = sin^{-1}(sinx) .

When we draw the graph both functions (shown below) we can actually see that they intersect only at two points x π x π \forall~x \in -\pi \le \quad x\le \quad \pi .

Nice solution , upvoted

Utkarsh Bansal - 6 years, 3 months ago
Deepanshu Gupta
Mar 7, 2015

It was quite amazing that number of solutions are in decimals . :)

Agree with you. That makes me laugh.

Purushottam Abhisheikh - 6 years, 3 months ago

Sir generally people try it by hit and trial method.So I set it to decimal

Utkarsh Bansal - 6 years, 3 months ago

Log in to reply

In that case, you could increase the domain of x x to greater values for example x [ 5 π , 5 π ] x \in [-5\pi , 5\pi] .

Purushottam Abhisheikh - 6 years, 3 months ago

Log in to reply

You are right sir .I understood

Utkarsh Bansal - 6 years, 3 months ago
Daniel Ferreira
Sep 18, 2015

1 + cos ( 2 x ) = 2 sin 1 ( sin x ) sin 1 ( sin x ) = 1 + cos ( 2 x ) 2 sin 1 ( sin x ) = 1 + cos ( 2 x ) 2 sin 1 ( sin x ) = cos 2 x sin 1 ( sin x ) = ± cos x sin ( ± cos x ) = sin x { sin ( c o s x ) = sin x sin ( c o s x ) = sin x \\ \sqrt{1 + \cos (2x)} = \sqrt{2} \cdot \sin^{- 1} (\sin x) \\\\ \sin^{- 1} (\sin x) = \frac{\sqrt{1 + \cos (2x)}}{\sqrt{2}} \\\\ \sin^{- 1} (\sin x) = \sqrt{\frac{1 + \cos (2x)}{2}} \\\\ \sin^{- 1} (\sin x) = \sqrt{\cos^2 x} \\\\ \sin^{- 1} (\sin x) = \pm \cos x \\\\ \sin (\pm \cos x) = \sin x \Rightarrow \begin{cases} \sin (- cos x) = \sin x \\ \sin (cos x) = \sin x \end{cases}

Igualando-as,

{ sin ( c o s x ) = sin x sin ( c o s x ) = sin x { c o s x = x c o s x = x \begin{cases} \sin (- cos x) = \sin x \\ \sin (cos x) = \sin x \end{cases} \Rightarrow \begin{cases} - cos x = x \\ cos x = x \end{cases}

Igualando-as, novamente:

x = x cos x = cos x 2 cos x = 0 cos x = 0 \\ x = x \\ - \cos x = \cos x \\ 2 \cdot \cos x = 0 \\ \cos x = 0

Logo, temos que S = { π 2 , π 2 } \boxed{S = \left \{ - \frac{\pi}{2}, \frac{\pi}{2} \right \}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...