Four More Years, Four More Years

Algebra Level 1

If 2 2020 2 2019 2 2018 + 2 2017 = k × 2 2017 {2}^{{2020}}-{2}^{{2019}}-{2}^{{2018}}+{2}^{{2017}} = \ {k}\times {2}^{{2017}} , find k k .

1 3 2 4 2016

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Feb 1, 2016

2 2020 2 2019 2 2018 + 2 2017 \Large \color{#D61F06}{2}^{\color{#20A900}{2020}}-\color{#D61F06}{2}^{\color{#3D99F6}{2019}}-\color{#D61F06}{2}^{\color{#20A900}{2018}}+\color{#D61F06}{2}^{\color{magenta}{2017}} = 2 2017 ( 2 3 2 1 2 2 + 2 0 ) = 3 × 2 2017 \Large =\color{#D61F06}{2}^{\color{magenta}{2017}} ( \color{#D61F06}{2}^{\color{#20A900}{3}}-\color{#D61F06}{2}^{\color{#3D99F6}{1}}-\color{#D61F06}{2}^{\color{#20A900}{2}}+\color{#D61F06}{2}^{\color{magenta}{0}}) \\ = \huge \color{#EC7300}{3}\times \color{#D61F06}{2}^{\color{magenta}{2017}} \ k = 3 \huge \therefore \huge \color{#624F41}{\boxed {\color{#EC7300}{k} =\color{darkviolet}{3}}}

2 2020 2 2019 2 2018 + 2 2017 = k × 2 2017 \Large \color{grey}{\Rightarrow} \large \color{#D61F06}{2}^{\color{#20A900}{2020}}-\color{#D61F06}{2}^{\color{#3D99F6}{2019}}-\color{#D61F06}{2}^{\color{#20A900}{2018}}+\color{#D61F06}{2}^{\color{magenta}{2017}} = \ \color{#EC7300}{k}\times \color{#D61F06}{2}^{\color{#302B94}{2017}}

2 2017 ( 2 3 2 2 2 1 + 2 0 ) 2 2017 = k \Large \frac{\color{#D61F06}{2}^{\color{#302B94}{2017}}(\color{#D61F06}{2}^\color{#20A900}{3}-\color{#D61F06}{2}^\color{#3D99F6}{2}-\color{#D61F06}{2}^\color{#20A900}{1}+\color{#D61F06}{2}^\color{magenta}{0})}{\color{#D61F06}{2}^{\color{#302B94}{2017}}}=\color{#EC7300}{k}

2 3 2 2 2 + 1 = k \Large \color{#D61F06}{2}^\color{#20A900}{3}-\color{#D61F06}{2}^\color{#3D99F6}{2}-\color{#D61F06}{2}+\color{magenta}{1}=\color{#EC7300}{k}

8 4 2 + 1 = k \Large \color{#20A900}{8}-\color{#3D99F6}{4}-\color{#D61F06}{2}+\color{magenta}{1}=\color{#EC7300}{k}

k = 3 \Large \color{#BA33D6}{\therefore} \color{#EC7300}{k}=\boxed{\color{#624F41}{3}}

Really colourful !!

Akshat Sharda - 5 years, 4 months ago

Log in to reply

THANKS. \large \color{#302B94} {\text{THANKS.}}

A Former Brilliant Member - 5 years, 4 months ago

I just say "Oops!".

Prasit Sarapee - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...