Problem for the next year!

Algebra Level 4

1 1 1 2 + 1 3 1 4 + + 1 2015 1 2016 1 1009 + 1 1010 + 1 1011 + + 1 2015 + 1 2016 = ? \large{\dfrac{ \displaystyle \frac{1}{1}-\frac{1}{2}+\frac{1}{3} - \frac{1}{4} + \ldots + \frac{1}{2015}-\frac{1}{2016} }{\displaystyle \frac{1}{1009}+\frac{1}{1010} + \frac{1}{1011} + \ldots + \frac{1}{2015}+\frac{1}{2016} } = \ ? }


The answer is 1.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Sep 15, 2015

= 1 1 2 + 1 3 1 4 + . . . 1 2016 =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2016}

= 1 + 1 2 + 1 3 + 1 4 + . . . + 1 2016 2 ( 1 2 + 1 4 + 1 6 + . . . + 1 2016 ) =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}-2(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016})

= 1 + 1 2 + 1 3 + 1 4 + . . . + 1 2016 ( 1 + 1 2 + 1 3 + . . . + 1 1008 ) =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}-(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008})

= 1 1009 + 1 1010 + . . . + 1 2016 =\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}

so the answer is 1 . \boxed{1}.

Nice solution, Upvoted!!!!!!!!!!!!!!!!!!!!

Department 8 - 5 years, 9 months ago

CORRECTION:See the comments!

Harmonic sum can be written as H n = l n ( n ) + γ + a l p h a 0 Hn=ln(n)+\gamma+alpha0

So denominator becomes equal to l n 2 ln 2 and numerator becomes equal to l n 2016 l n 1008 ln2016-ln1008

So the result is 1 1 .

Well... I disagree with your solution. It's not accurate. Please refer Akshat Sharda's solution for the correct approach.

Satyajit Mohanty - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...