Problem involving Gabriel's Horn

Calculus Level pending

Let e e be Euler's number and a a and b b be positive real numbers.

Let f ( x ) = 1 x f(x) = \dfrac{1}{x} and g ( x ) = a e ( a x + b ) ( a e x + a ( 1 e ) + b ) g(x) = \sqrt{\dfrac{ae}{(ax + b)(aex + a(1 - e) + b)}} .

Let V f V_{f} be the volume of the region formed when the curve f ( x ) f(x) is revolved about the x x -axis on [ 1 , ) [1,\infty) and V g V_{g} be the volume of the region formed when the curve g ( x ) g(x) is revolved about the x x -axis on [ 1 , ) [1,\infty) .

If f ( 1 ) = g ( 1 ) f(1) = g(1) and V f = V g V_{f} = V_{g} , find the volume of the region bounded between by the curves f ( x ) f(x) and g ( x ) g(x) when revolved about the x x -axis on [ 2 , 1 ] [-2,-1] to eight decimal places.


The answer is 1.46497643.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 26, 2018

f ( 1 ) = 1 = g ( 1 ) a + b = a e f(1) = 1 = g(1) \implies \boxed{a + b = \sqrt{ae}} and π 1 ( f ( x ) ) 2 d x = 1 x 1 = π = 1 ( g ( x ) ) 2 d x \pi\int_{1}^{\infty} (f(x))^2 dx = \dfrac{-1}{x}|_{1}^{\infty} = \pi = \int_{1}^{\infty} (g(x))^2 dx .

Using partial fractions for π 1 ( g ( x ) ) 2 d x \pi\int_{1}^{\infty} (g(x))^2 dx we obtain the system:

e A + B = 0 eA + B = 0

( a ( 1 e ) + b ) A + b B = a e (a(1 - e) + b)A + bB = ae

Solving the system we obtain:

A = a e ( 1 e ) ( a + b ) A = \dfrac{ae}{(1 - e)(a + b)} and B = a e 2 ( 1 e ) ( a + b ) B = -\dfrac{ae^2}{(1 - e)(a + b)} \implies π 1 ( g ( x ) ) 2 d x = π e ( 1 e ) ( a + b ) 1 a a x + b a e a e x + a ( 1 e ) + b d x = \pi\int_{1}^{\infty} (g(x))^2 dx = \pi\dfrac{e}{(1 - e)(a + b)}\int_{1}^{\infty} \dfrac{a}{ax + b} - \dfrac{ae}{aex + a(1 - e) + b} dx =
π e ( 1 e ) ( a + b ) 1 ln ( a x + b a e x + a ( 1 e ) + b ) 1 = \pi\dfrac{e}{(1 - e)(a + b)}\int_{1}^{\infty}\ln(\dfrac{ax + b}{aex + a(1 - e) + b})|_{1}^{\infty} =

π e ( 1 e ) ( a + b ) = π ( e 1 ) ( a + b ) = e \pi\dfrac{-e}{(1 - e)(a + b)} = \pi \implies (e - 1)(a + b) = e \implies

a + b = e e 1 \boxed{a + b = \dfrac{e}{e -1}}

a + b = a e \boxed{a + b = \sqrt{ae}}

a = e ( e 1 ) 2 \implies a = \dfrac{e}{(e - 1)^2} and b = e ( e 2 ) ( e 1 ) 2 g ( x ) = ( e 1 ) e ( e x + e 2 2 e ) ( e x 1 ) b = \dfrac{e(e - 2)}{(e - 1)^2} \implies g(x) = (e - 1)\sqrt{\dfrac{e}{(ex + e^2 - 2e)(ex - 1)}} .

π 2 1 ( f ( x ) ) 2 d x = 1 x 2 1 = π 2 \pi\int_{-2}^{-1} (f(x))^2 dx = -\dfrac{1}{x}|_{-2}^{-1} = \dfrac{\pi}{2}

and using partial fractions for π 2 1 ( g ( x ) ) 2 d x \pi\int_{-2}^{-1} (g(x))^2 dx we obtain the system:

A + B = 0 A + B = 0

A + ( e 2 2 e ) B = 1 -A + (e^2 - 2e)B = 1

B = 1 ( e 1 ) 2 \implies B = \dfrac{1}{(e - 1)^2} and A = 1 ( e 1 ) 2 A = -\dfrac{1}{(e - 1)^2} \implies

π 2 1 ( g ( x ) ) 2 d x = π 2 1 ( e e x + e 2 2 e + e e x 1 ) d x = \pi\int_{-2}^{-1} (g(x))^2 dx = \pi\int_{-2}^{-1} (\dfrac{-e}{ex + e^2 - 2e} + \dfrac{e}{ex - 1}) dx = π ln ( e x 1 e x + e 2 2 e ) 2 1 \pi\ln(\dfrac{ex - 1}{ex + e^2 - 2e})|_{-2}^{-1} = π ln ( ( e + 1 ) ( 4 e ) ( 2 e + 1 ) ( 3 e ) ) \pi\ln(\dfrac{(e + 1)(4 - e)}{(2e + 1)(3 - e)}) \implies

π 2 1 ( g ( x ) ) 2 ( f ( x ) ) 2 d x = π ( ln ( ( e + 1 ) ( 4 e ) ( 2 e + 1 ) ( 3 e ) ) 1 2 ) 1.46497643 \implies \pi\int_{-2}^{-1} (g(x))^2 - (f(x))^2 \:\ dx = \pi(\ln(\dfrac{(e + 1)(4 - e)}{(2e + 1)(3 - e)}) - \dfrac{1}{2}) \approx \boxed{1.46497643} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...