Beautiful Quadrilateral Identity

Algebra Level 2

a + b = c + 6 a b a c = b c 1 \begin{aligned} a+ b & = & c + 6 \\ ab - ac & = & bc - 1 \\ \end{aligned}

Given the equations above, what is a 2 + b 2 + c 2 ? a^2 + b^2 + c^2?


The answer is 38.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ben Habeahan
Sep 6, 2015

a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + b c + a c ) = ( ( c + 6 ) + c ) 2 2 ( ( b c + a c 1 ) + b c + a c ) = ( 2 c + 6 ) 2 2 ( 2 b c + 2 a c 1 ) = ( 4 c 2 + 24 c + 36 ) 2 ( 2 c ( b + a ) 1 ) = ( 4 c 2 + 24 c + 36 ) 2 ( 2 c ( c + 6 ) 1 ) = ( 4 c 2 + 24 c + 36 ) ( 4 c 2 + 24 c 2 ) = 38 \begin{array}{lll} a^2+b^2+c^2&=&{(a+b+c)}^2-2(ab+bc+ac) \\ &=&{((c+6)+c)}^2-2((bc+ac-1)+bc+ac) \\ &=&{(2c+6)}^2-2(2bc+2ac-1) \\ &=&{(4c^2+24c+36)}-2(2c(b+a)-1) \\ &=&{(4c^2+24c+36)}-2(2c(c+6)-1) \\ &=&{(4c^2+24c+36)}-(4c^2+24c-2) \\ &=& \boxed{38} \end{array}

Tom Finet
Jun 3, 2017

( a + b c ) 2 = 36 a 2 + b 2 + c 2 = 36 2 a b + 2 b c + 2 a c = 2 ( 18 a b + b c + a c ) = 2 ( 18 a b + ( a b a c + 1 ) + a c ) = 2 ( 19 ) = 38 ({ a }+{ b }-{ c })^{ 2 } = 36\\ a^{ 2 }+b^{ 2 }+c^{ 2 } = 36-2ab+2bc+2ac\\ = 2(18-ab+bc+ac)\\ = 2(18-ab+(ab-ac+1)+ac)\\ = 2(19) = 38

Abhisek Mohanty
Mar 29, 2015

Use the identity

(a+b-c)^2 = a^2 + b^2 + c^2 + 2( ab -bc-ca )

Marvin Chong
Feb 8, 2020

Rearranging the equations,

a + b - c = 6 1 \boxed{1}

ab - ac -bc = -1 2 \boxed{2}

Squaring equation 1 \boxed{1} :

a 2 + b 2 + c 2 + 2 ( a b a c b c ) = 36 a^2+b^2+c^2 + 2(ab-ac-bc) = 36 1 \boxed{1'} (using the ( a + b c ) 2 (a+b-c)^2 identity)

Substituting equation 2 \boxed{2} into equation 1 \boxed{1'} ,

a 2 + b 2 + c 2 + 2 ( 1 ) = 36 a^2+b^2+c^2 + 2(-1) = 36

a 2 + b 2 + c 2 2 = 36 a^2+b^2+c^2 - 2 = 36

a 2 + b 2 + c 2 = 38 a^2+b^2+c^2 = \boxed{38}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...