Problem No. 50

Algebra Level 5

Find the maximum value of the expression ( x 4 ) 2 + ( x 3 2 ) 2 ( x 2 ) 2 + ( x 3 + 4 ) 2 \sqrt{(x-4)^2 + (x^3 - 2)^2 } - \sqrt{ (x-2)^2 + (x^3 + 4)^2} as x x runs through all real numbers.

3 10 3\sqrt{10} 4 10 4\sqrt{10} 5 10 5\sqrt{10} 2 10 2\sqrt{10}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Soldà Federico
Aug 24, 2015

Let a and b two complex numbers: a = ( x 2 ) + ( x 3 + 4 ) i a = ( x 2 ) 2 + ( x 3 + 4 ) 2 a + b = ( x 4 ) + ( x 3 2 ) i a + b = ( x 4 ) 2 + ( x 3 2 ) 2 S o b = ( a + b ) a = ( ( x 4 ) ( x 2 ) ) + ( ( x 3 2 ) ( x 3 + 4 ) ) i = 2 6 i a=(x-2)+(x^{3}+4)i \Rightarrow |a|=\sqrt{(x-2)^{2}+(x^{3}+4)^2} \\ a+b=(x-4)+(x^{3}-2)i \Rightarrow |a+b|=\sqrt{(x-4)^{2}+(x^{3}-2)^{2}} \\ So \\ b=(a+b)-a=((x-4)-(x-2))+((x^{3}-2)-(x^{3}+4))i=-2-6i For the Triangle Inequality: a + b a + b a + b a b ( x 4 ) 2 + ( x 3 2 ) 2 ( x 2 ) 2 + ( x 3 + 4 ) 2 b b = ( 2 ) 2 + ( 6 ) 2 = 40 = 2 10 |a|+|b|\geq |a+b| \\ |a+b|-|a|\leq |b| \\ \sqrt{(x-4)^{2}+(x^{3}-2)^{2}}-\sqrt{(x-2)^{2}+(x^{3}+4)^2}\leq |b| \\ |b|=\sqrt{(-2)^{2}+(-6)^2}=\sqrt{40}=\boxed{2\sqrt{10}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...