Problem of 2017 (III)

Calculus Level 2

f ( x ) = 1 + x + x 2 + x 3 + x 4 + . . . . . . . . . . . . . + x 2016 + x 2017 \LARGE f(x)=1+x+x^2+x^3+x^4+.............+x^{2016}+x^{2017}

Find out f 2017 ( x ) f^{2017}(x)


  • Here f 2017 ( x ) f^{2017}(x) is 2017 2017 th derivative of f ( x ) f(x) .
Can't be determined None of these \infty 2017 ! 2016 \frac{2017!}{2016} 2017! 2016!

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Mehedi Hasan
Nov 28, 2017

f ( x ) = 1 + x + x 2 + x 3 + x 4 + . . . . . . . . . . . . . + x 2016 + x 2017 f 1 ( x ) = 0 + 1 + 2 x + 3 x 2 + 4 x 3 + . . . . . . . . . . . . . . . . + 2016 x 2015 + 2017 x 2016 f 2 ( x ) = 0 + 0 + 2 1 + 3 2 x + 4 3 x 2 + . . . . . . . . . . . . . . . . 2016 2015 x 2014 + 2017 2016 x 2015 f 3 ( x ) = 0 + 0 + 0 + 3 2 1 + 4 3 x + . . . . . . . . . . . . . . . . . . . . 2016 2015 2014 x 2013 + 2017 2016 2015 x 2014 f 2017 ( x ) = 0 + 0 + 0 + 0 + . . . . . . . . . . . . . . . . . . + 0 + 2017 2016 2015 2014...............3 2 1 = 2017 ! \large{\begin{aligned}f(x)&=1+x+x^2+x^3+x^4+.............+x^{2016}+x^{2017}\\ f^1(x)&=0+1+2x+3x^2+4x^3+................+2016x^{2015}+2017x^{2016}\\ f^2(x)&=0+0+2\cdot1+3\cdot2x+4\cdot3x^2+................2016\cdot2015x^{2014}+2017\cdot2016x^{2015}\\ f^3(x)&=0+0+0+3\cdot2\cdot1+4\cdot3x+....................2016\cdot2015\cdot2014x^{2013}+2017\cdot2016\cdot2015x^{2014}\\ ----&---------------------------------------\\ ----&---------------------------------------\\ f^{2017}(x)&=0+0+0+0+..................+0+2017\cdot2016\cdot2015\cdot2014...............3\cdot2\cdot1=\boxed{2017!}\end{aligned}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...