Problem of the year 2016

Algebra Level 5

a x + b y = 3 a x 2 + b y 2 = 7 a x 3 + b y 3 = 16 a x 4 + b y 4 = 42 \begin{aligned} ax + by & = 3 \\ a{ x }^{ 2 } + b{ y }^{ 2 } & = 7 \\ a{ x }^{ 3 } + b{ y }^{ 3 } & = 16 \\ a{ x }^{ 4 } + b{ y }^{ 4 } & = 42 \end{aligned} .

If a a , b b , x x , and y y are real numbers satisfying the system of equations above, find a x 5 + b y 5 a{ x }^{ 5 } + b{ y }^{ 5 } .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Priyanshu Mishra
Sep 7, 2016

For n = 2 ; n = 3 n = 2; n = 3 , the identity

( a x n + b y n ) ( x + y ) ( a x n 1 + b y n 1 ) ( x y ) = a x n + 1 + b y n + 1 \large\ \left( a{ x }^{ n }+b{ y }^{ n } \right) (x+y)-\left( a{ x }^{ n-1 }+b{ y }^{ n-1 } \right) (xy)=a{ x }^{ n+1 }+b{ y }^{ n+1 }

leads to the equations

7 ( x + y ) 3 x y = 16 7{(x+y)} - 3xy = 16 and 16 ( x + y ) 7 x y = 42 16{(x+y)} - 7xy = 42 .

Solving these two equations simultaneously yields

x + y = 14 x + y = -14 and x y = 38 xy = -38 .

Applying recurrence identity for n = 4 n = 4 gives

a x 5 + b y 5 = ( 42 ) ( 14 ) ( 16 ) ( 38 ) = 20 a{ x }^{ 5 } + b{ y }^{ 5 } = (42)(-14) - (16)(-38) = \boxed{20} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...