Problem on ITF

Geometry Level 3

sin 1 ( x x 2 2 + x 3 4 ) + cos 1 ( x 2 x 4 2 + x 6 4 ) = π 2 \sin^{-1}\left ( x - \frac{x^2}{2} + \frac{x^3}{4} - \cdots \right ) + { \cos^{-1}\left ( { x^2 - \frac{x^4}{2} + \frac{x^6}{4} \cdots} \right ) } = { \frac{\pi }{2}}

Given the equation above for 0 < x < 2 0.5 0<|x|<2^{0.5} , then x x equals to:


Try out other JEE problems!


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vatsalya Tandon
Jan 21, 2016

s i n 1 ( x x 2 2 + x 3 4 ) + c o s 1 ( x 2 x 4 2 + x 6 4 ) = π 2 sin^{-1}\left ( x - \frac{x^2}{2} + \frac{x^3}{4} - \dots \right ) + { cos^{-1}\left ( { x^2 - \frac{x^4}{2} + \frac{x^6}{4} \dots} \right ) } = { \frac{\pi }{2}}

= s i n 1 ( x 1 + x 2 ) + c o s 1 ( x 2 1 + x 2 2 ) = π 2 =sin^{-1} (\frac{x}{1+\frac{x}{2}}) + cos^{-1}(\frac{x^2}{1+\frac{x^2}{2}}) = \frac{\pi}{2}

= s i n 1 ( 2 x 2 + x ) + c o s 1 ( 2 x 2 2 + x 2 ) = π 2 =sin^{-1} (\frac{2x}{2+x}) + cos^{-1}(\frac{2x^2}{2+x^2}) = \frac{\pi}{2}

= s i n 1 ( 2 x 2 + x ) = s i n 1 ( 2 x 2 2 + x 2 ) =sin^{-1} (\frac{2x}{2+x}) = sin^{-1}(\frac{2x^2}{2+x^2})

2 x 2 + x = 2 x 2 2 + x 2 \frac{2x}{2+x} = \frac{2x^2}{2+ x^2}

1 + 2 x = 1 + 2 x 2 1+ \frac{2}{x} = 1 + \frac{2}{x^2}

x = x 2 x = x^2

x = 1 x = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...