Problem on Limits

Calculus Level pending

lim n 1 n ( cos 2 p ( π 2 n ) + cos 2 p ( 2 π 2 n ) + cos 2 p ( 3 π 2 n ) + + cos 2 p ( ( n 1 ) π 2 n ) ) \lim_{n \to \infty} \frac{1}{n}\left(\cos^{2p} \left(\frac{\pi}{2n}\right) + \cos^{2p}\left(\frac{2\pi}{2n}\right) + \cos^{2p}\left(\frac{3\pi}{2n}\right) + \cdots + \cos^{2p}\left(\frac{(n - 1)\pi}{2n}\right)\right)

Find the limit above with p = 5 p = 5 . If the answer is of the form a b 2 c 8 \dfrac{ab^2}{c^8} , where a a , b b , and c c are distinct prime numbers.

Enter a + b + c a + b + c .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L = lim n 1 n k = 1 n 1 cos 2 p ( k π 2 n ) By Riemann sums = 0 1 cos 2 p ( π x 2 ) d x Putting p = 5 = 0 1 cos 10 ( π x 2 ) d x Let u = π x 2 d u = π 2 d x = 2 π 0 π 2 cos 10 u d u Using reduction formula = 9 5 π 0 π 2 cos 8 u d u = 63 40 π 0 π 2 cos 6 u d u = 63 48 π 0 π 2 cos 4 u d u = 63 64 π 0 π 2 cos 2 u d u = 63 128 π 0 π 2 ( 1 + cos ( 2 u ) ) d u = 63 128 π [ u + sin ( 2 u ) 2 ] 0 \p 1 2 = 63 256 = 7 3 2 2 8 \begin{aligned} L & = \lim_{n \to \infty} \frac 1n \sum_{k=1}^{n-1} \cos^{2p} \left(\frac {k\pi}{2n} \right) & \small \blue{\text{By Riemann sums}} \\ & = \int_0^1 \cos^{2p} \left(\frac {\pi x}2 \right) dx & \small \blue{\text{Putting }p=5} \\ & = \int_0^1 \cos^{10} \left(\frac {\pi x}2 \right) dx & \small \blue{\text{Let }u = \frac {\pi x}2 \implies du = \frac \pi 2\ d x} \\ & = \frac 2\pi \int_0^\frac \pi 2 \cos^{10} u \ du & \small \blue{\text{Using reduction formula}} \\ & = \frac 9{5\pi} \int_0^\frac \pi 2 \cos^8 u \ du \\ & = \frac {63}{40\pi} \int_0^\frac \pi 2 \cos^6 u \ du \\ & = \frac {63}{48\pi} \int_0^\frac \pi 2 \cos^4 u \ du \\ & = \frac {63}{64\pi} \int_0^\frac \pi 2 \cos^2 u \ du \\ & = \frac {63}{128\pi} \int_0^\frac \pi 2 (1+\cos (2u)) \ du \\ & = \frac {63}{128\pi} \left[u+\frac {\sin (2u)}2 \right]_0^\frac \p1 2 \\ & = \frac {63}{256} = \frac {7\cdot 3^2}{2^8} \end{aligned}

Therefore a + b + c = 7 + 3 + 2 = 12 a+b+c = 7+3+2 = \boxed{12} .


References:

  • Riemann sums
  • Reduction formula: cos m x d x = sin x cos m 1 x m + m 1 m cos m 2 x d x \displaystyle \int \cos^m x \ dx = \frac {\sin x \cos^{m-1} x}m + \frac {m-1}m \int \cos^{m-2} x \ dx

The given sum is equal to 0 1 cos 10 ( π x 2 ) d x = 63 256 = 7 × 3 2 2 8 \displaystyle \int_0^1 \cos^{10} \left (\frac{πx}{2}\right ) dx=\dfrac{63}{256}=\dfrac{7\times 3^2}{2^8} .

So a = 7 , b = 3 , c = 2 a=7,b=3,c=2 and a + b + c = 12 a+b+c=\boxed {12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...