Problem on Step functions

Algebra Level 3

Let x 1 < x 2 < x 3 x_1 < x_2 < x_3 be three distinct roots of the equation : x 1 = { x } \sqrt{\lfloor x \rfloor} - 1 = \{x\} and y 1 < y 2 < y 3 y_1 < y_2 < y_3 be three distinct roots of the equation : y 1 = { y } \sqrt{\lceil y \rceil} - 1 = \{y\} . [ [ Here p \lceil p \rceil denotes least integer greater than or equal to p , p p \;,\; \lfloor p \rfloor denotes greatest integer less than or equal to p p and { p } \{p\} denotes fractional part of p ] p \,] . Then if :

x 2 y 2 { x 1 y 1 } + x 3 y 3 = a \lfloor x_2 - y_2 \rfloor - \{x_1 - y_1\} + \lceil x_3 - y_3 \rceil = a

and x 1 2 x b 1 y 1 y b 2 2 = 2 y b 3 x b 4 x_1^2x_{b_1} - y_1y_{b_2}^2 = 2y_{b_3} - x_{b_4} where b 1 , b 2 , b 3 b_1\,,\,b_2\,,\,b_3 and b 4 b_4 are subscripts of x x and y y and 1 b i 3 , i = { 1 , 2 , 3 , 4 } , b i N 1 \leq b_i \leq 3 \;,\; i = \{1,2,3,4\} \;,\;b_i \in \mathbb N with all the b i b_i not being equal. Find a + b 1 + b 2 + b 3 + b 4 \lfloor a + b_1 + b_2 + b_3 + b_4\rfloor .

12 13 10 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We know that 0 { x } < 1 0 \leq \{x\} < 1

0 x 1 < 1 \Rightarrow 0 \leq \sqrt{\lfloor x \rfloor} - 1 < 1

1 x < 2 1 x < 4 x { 1 , 2 , 3 } . Now putting the values of x in the equation x 1 = { x } we will get the corresponding values of { x } as { x } = { 0 , 2 1 , 3 1 } \Rightarrow 1 \leq \sqrt{\lfloor x \rfloor} < 2 \Rightarrow 1 \leq \lfloor x \rfloor <4 \Rightarrow \lfloor x \rfloor \in \{1,2,3\}.\;\text{Now putting the values of }\lfloor x \rfloor \text{ in the equation }\sqrt{\lfloor x \rfloor} - 1 = \{x\}\text{ we will get the corresponding values of }\{x\} \text{ as }\{x\} = \{0,\sqrt{2}-1,\sqrt{3}-1\} .

Now we know x = x + { x } .By putting the corresponding values of x and { x } we get \text{Now we know }x = \lfloor x \rfloor + \{x\}\text{ .By putting the corresponding values of }\lfloor x \rfloor \text{ and }\{x\} \text{ we get }

x 1 = 1 x 2 = 1 + 2 x 3 = 2 + 3 x_1 = 1 \hspace{2cm} x_2 = 1 + \sqrt{2} \hspace{2cm} x_3 = 2 + \sqrt{3}

Similarly solving for y , \text{Similarly solving for }y\,,

0 y 1 < 1 0 \leq \sqrt{\lceil y \rceil} - 1 < 1

1 y < 2 1 y < 4 y { 1 , 2 , 3 } . Now putting the values of y in the equation y 1 = { y } we will get the corresponding values of { y } as { y } = { 0 , 2 1 , 3 1 } \Rightarrow 1 \leq \sqrt{\lceil y \rceil} < 2 \Rightarrow 1 \leq \lceil y \rceil <4 \Rightarrow \lceil y \rceil \in \{1,2,3\}.\;\text{Now putting the values of }\lceil y \rceil \text{ in the equation }\sqrt{\lceil y \rceil} - 1 = \{y\}\text{ we will get the corresponding values of }\{y\} \text{ as }\{y\} = \{0,\sqrt{2}-1,\sqrt{3}-1\} .

We know y = y 1 , when y Z and y = y = y , when y Z \text{We know }\lfloor y \rfloor = \lceil y \rceil - 1\,,\, \text{when } y \notin \mathbb Z\text{ and }\lfloor y \rfloor = \lceil y \rceil = y \,,\, \text{when }y\in \mathbb Z

Using these equations, we get the corresponding values of y as y = { 1 , 1 , 2 } \lfloor y\rfloor \text{ as }\lfloor y\rfloor = \{1,1,2\}

Again using y = y + { y } .By putting the corresponding values of y and { y } we get \text{Again using }y = \lfloor y \rfloor + \{y\}\text{ .By putting the corresponding values of }\lfloor y \rfloor \text{ and }\{y\} \text{ we get }

y 1 = 1 y 2 = 2 y 3 = 1 + 3 y_1 = 1 \hspace{2cm} y_2 = \sqrt{2} \hspace{2cm} y_3 = 1+\sqrt{3}

Now, x 2 y 2 { x 1 y 1 } + x 3 y 3 = ( 1 + 2 ) 2 { 1 1 } + ( 2 + 3 ) ( 1 + 3 ) = 1 0 + 1 = 2 \lfloor x_2 - y_2 \rfloor - \{x_1 - y_1\} + \lceil x_3 - y_3\rceil = \lfloor (1 + \sqrt{2}) - \sqrt{2} \rfloor - \{1 - 1\} + \lceil (2 + \sqrt{3}) - (1+\sqrt{3})\rceil = 1 - 0 + 1 = 2 .

a = 2 \Rightarrow a = 2

Finding all the possible values of 2 y b 3 x b 4 we get \text{Finding all the possible values of }2y_{b_3} - x_{b_4} \text{ we get }

2 y 1 x 1 = 2 ( 1 ) 1 = 1 2 y 1 x 2 = 2 ( 1 ) ( 1 + 2 ) = 1 2 2 y 1 x 3 = 2 ( 1 ) ( 2 + 3 ) = 3 2y_1 - x_1 = 2(1) - 1 = 1 \hspace{4cm} 2y_1 - x_2 = 2(1) - (1+\sqrt{2}) = 1 - \sqrt{2} \hspace{4cm} 2y_1 - x_3 = 2(1) - (2 + \sqrt{3}) = -\sqrt{3}

2 y 2 x 1 = 2 2 1 2 y 2 x 2 = 2 2 ( 1 + 2 ) = 2 1 2 y 2 x 3 = 2 2 2 3 2y_2 - x_1 = 2\sqrt{2} - 1 \hspace{4cm} 2y_2 - x_2 = 2\sqrt{2} - (1 + \sqrt{2}) = \sqrt{2} - 1 \hspace{4cm} 2y_2 - x_3 = 2\sqrt{2} - 2-\sqrt{3}

2 y 3 x 1 = 2 ( 1 + 3 ) 1 = 1 + 2 3 2 y 3 x 2 = 2 ( 1 + 3 ) ( 1 + 2 ) = 1 + 2 3 2 2 y 3 x 3 = 2 ( 1 + 3 ) ( 2 + 3 ) = 3 2y_3-x_1=2(1+\sqrt{3})-1=1+2\sqrt{3}\hspace{3cm}2y_3-x_2=2(1+\sqrt{3})-(1+\sqrt{2})=1+2\sqrt{3}-\sqrt{2}\hspace{3cm}2y_3-x_3=2(1+\sqrt{3})-(2+\sqrt{3})=\sqrt{3}

Now finding all the possible values of x 1 2 x b 1 y 1 y b 2 2 we get \text{Now finding all the possible values of }x_1^2x_{b_1} - y_1y_{b_2}^2 \text{ we get }

x 1 = y 1 = 1 our expression becomes x b 1 y b 2 2 \because x_1 = y_1 = 1\text{ our expression becomes }x_{b_1} - y_{b_2}^2

x 1 y 1 2 = 1 1 2 = 0 x 1 y 2 2 = 1 ( 2 ) 2 = 1 x 1 y 3 2 = 1 ( 1 + 3 ) 2 = 3 2 3 x_1-y_1^2=1-1^2=0\hspace{5cm}x_1-y_2^2=1-(\sqrt{2})^2=-1\hspace{5cm}x_1-y_3^2=1-(1+\sqrt{3})^2=-3-2\sqrt{3}

x 2 y 1 2 = ( 1 + 2 ) 1 2 = 2 x 2 y 2 2 = ( 1 + 2 ) ( 2 ) 2 = 2 1 x 2 y 3 2 = ( 1 + 2 ) ( 1 + 3 ) 2 = 2 3 2 3 x_2-y_1^2=(1+\sqrt{2})-1^2=-\sqrt{2}\hspace{2.2cm}x_2-y_2^2=(1+\sqrt{2})-(\sqrt{2})^2=\sqrt{2}-1\hspace{2.2cm}x_2-y_3^2=(1+\sqrt{2})-(1+\sqrt{3})^2=\sqrt{2}-3-2\sqrt{3}

x 3 y 1 2 = ( 2 + 3 ) 1 = 1 + 3 x 3 y 2 2 = ( 2 + 3 ) ( 2 ) 2 = 3 x 3 y 3 2 = ( 2 + 3 ) ( 1 + 3 ) 2 = 2 3 x_3-y_1^2=(2+\sqrt{3})-1=1+\sqrt{3}\hspace{3cm}x_3-y_2^2=(2+\sqrt{3})-(\sqrt{2})^2=\sqrt{3}\hspace{3cm}x_3-y_3^2=(2+\sqrt{3})-(1+\sqrt{3})^2=-2-\sqrt{3}

Matching all the expressions we get 2 possible values of { b 1 , b 2 , b 3 , b 4 } \text{Matching all the expressions we get }2\text{ possible values of }\{b_1,b_2,b_3,b_4\}

{ b 1 , b 2 , b 3 , b 4 } 1 = { 2 , 2 , 2 , 2 } and { b 1 , b 2 , b 3 , b 4 } 2 = { 3 , 2 , 3 , 3 } but according to question all the b i are not equal. So first case is not considered. \{b_1,b_2,b_3,b_4\}_1=\{2,2,2,2\} \text{ and }\{b_1,b_2,b_3,b_4\}_2=\{3,2,3,3\}\text{ but according to question all the }b_i \text{ are not equal. So first case is not considered. }

So, b 1 = 3 , b 2 = 2 , b 3 = 3 , b 4 = 3 \text{So, }b_1=3\;,\;b_2=2\;,\;b_3=3\;,\;b_4=3

Hence our answer is 2 + 3 + 2 + 3 + 3 = 13 \text{Hence our answer is }2+3+2+3+3 = \boxed{13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...