Problem without words (Calculus Challenge 9)!

Calculus Level 5

1 0 5 0 ln ( 1 + e π x ) 1 + x 2 d x = ? \large \displaystyle \left \lfloor 10^5 \int_{0}^{\infty}{\frac{-\ln(1+e^{-\pi x})}{1+x^2} \ dx} \right \rfloor = \ ?

Details and Assumptions:

  • x \left \lfloor x \right \rfloor denotes the floor or greatest integer function.


The answer is -22735.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ishan Singh
Apr 17, 2016

Proposition : 0 log ( 1 e 2 a π x ) 1 + x 2 d x = π [ 1 2 log ( 2 a π ) + a ( log a 1 ) log ( Γ ( a + 1 ) ) ] \int_{0}^{\infty} \dfrac{\log(1-e^{-2a\pi x})}{1+x^2} \mathrm{d}x = \pi \left[\dfrac{1}{2} \log (2a\pi ) + a(\log a - 1) - \log(\Gamma(a+1)) \right]

Proof : Let I ( a ) = 0 log ( 1 e 2 a π x ) 1 + x 2 d x \displaystyle \text{I} (a) = \int_{0}^{\infty} \dfrac{\log(1-e^{-2a\pi x})}{1+x^2} \mathrm{d}x

= r = 1 1 r 0 e 2 a r π x 1 + x 2 d x \displaystyle = -\sum_{r=1}^{\infty} \dfrac{1}{r} \int_{0}^{\infty} \dfrac{e^{-2ar \pi x}}{1+x^2} \mathrm{d}x

= r = 1 1 r 0 0 e x ( 2 a r π + y ) sin y d y d x \displaystyle = -\sum_{r=1}^{\infty} \dfrac{1}{r} \int_{0}^{\infty} \int_{0}^{\infty} e^{-x(2ar \pi + y)} \sin y \ \mathrm{d}y \ \mathrm{d}x

= r = 1 1 r 0 sin y 2 a r π + y d y \displaystyle = -\sum_{r=1}^{\infty} \dfrac{1}{r} \int_{0}^{\infty} \dfrac{\sin y}{2ar\pi + y} \mathrm{d}y

= r = 1 1 r 0 sin x 2 a r π + x d x \displaystyle = - \sum_{r=1}^{\infty} \dfrac{1}{r} \int_{0}^{\infty} \dfrac{\sin x}{2ar\pi + x} \mathrm{d}x

Substitute x 2 r π x \displaystyle x \mapsto 2 r \pi x

I ( a ) = r = 1 1 r 0 sin 2 r π x x + a d x \displaystyle \implies \text{I}(a) = - \sum_{r=1}^{\infty} \dfrac{1}{r} \int_{0}^{\infty} \dfrac{\sin 2 r \pi x}{x + a} \mathrm{d}x

= 0 1 x + a r = 1 sin ( 2 r π x ) r d x \displaystyle = -\int_{0}^{\infty} \dfrac{1}{x+a} \sum_{r=1}^{\infty} \dfrac{\sin(2 r \pi x)}{r} \mathrm{d}x

= π 0 1 x + a ( 1 2 { x } ) d x ( r = 1 sin ( 2 r π x ) r = π 2 π { x } ) \displaystyle = -\pi \int_{0}^{\infty} \dfrac{1}{x+a} \left(\dfrac{1}{2} - \{x\} \right) \mathrm{d}x \quad \left( \because \sum_{r=1}^{\infty} \dfrac{\sin (2 r \pi x)}{r} = \dfrac{\pi}{2} - \pi \{x\} \right)

= π [ 0 d x 2 ( x + a ) 0 { x } x + a d x ] \displaystyle = -\pi \left[ \int_{0}^{\infty} \dfrac{\mathrm{d}x}{2(x+a)} - \int_{0}^{\infty} \dfrac{\{x\}}{x+a} \mathrm{d}x \right]

= π lim n [ 1 2 log ( a + n a ) A ( n ) ] \displaystyle = -\pi \lim_{n \to \infty} \left[ \dfrac{1}{2} \log \left(\dfrac{a+n}{a}\right) - \text{A}(n) \right]

where A ( n ) = 0 n { x } x + a d x \displaystyle \text{A}(n) = \int_{0}^{n} \dfrac{\{x\} }{x+a} \mathrm{d}x

Now,

A ( n ) = 0 n { x } x + a d x \displaystyle \text{A}(n) = \int_{0}^{n} \dfrac{\{x\} }{x+a} \mathrm{d}x

= k = 0 k k + 1 x k x + a d x \displaystyle = \sum_{k=0}^{\infty} \int_{k}^{k+1} \dfrac{x-k}{x+a} \mathrm{d}x

= k = 0 [ 1 ( k + a ) log ( k + a + 1 k + a ) ] \displaystyle = \sum_{k=0}^{\infty} \left[1 - (k+a)\log \left(\dfrac{k+a+1}{k+a}\right) \right]

= n k = 0 [ ( k + a + 1 ) log ( k + a + 1 ) ( k + a ) log ( k + a ) log ( k + a + 1 ) ] \displaystyle = n - \sum_{k=0}^{\infty} \left[ (k+a+1) \log (k+a+1) - (k+a) \log (k+a) - \log (k+a+1) \right]

= n + a log a ( a + n ) log ( a + n ) + log ( a ( a + 1 ) ( a + n ) ) log a \displaystyle = n + a\log a - (a+n) \log (a+n) +\log(a \cdot (a+1) \cdot \ldots \cdot (a+n)) - \log a

I ( a ) = π lim n [ 1 2 log ( a + n a ) n a log a + ( a + n ) log ( a + n ) log ( a ( a + 1 ) ( a + n ) ) + log a ] \displaystyle \implies \text{I} (a) = -\pi \lim_{n \to \infty} \left[ \dfrac{1}{2} \log \left(\dfrac{a+n}{a}\right) - n - a\log a + (a+n) \log (a+n) - \log(a \cdot (a+1) \cdot \ldots \cdot (a+n)) + \log a \right]

Note that lim n n ! n t t ( t + 1 ) ( t + n ) = Γ ( t ) \displaystyle \lim_{n \to \infty} \dfrac{ n! n^t}{t \cdot (t+1) \cdot \ldots \cdot (t+n)} = \Gamma(t)

I ( a ) = π lim n [ 1 2 log ( a + n a ) n a log a + ( a + n ) log ( a + n ) a log ( n ) log ( n ! ) + log ( Γ ( a ) ) + log a ] \displaystyle \implies \text{I} (a) = -\pi \lim_{n \to \infty} \left[ \dfrac{1}{2} \log \left(\dfrac{a+n}{a}\right) - n - a\log a + (a+n) \log (a+n) - a\log(n) - \log (n!) + \log(\Gamma(a)) + \log a \right]

Simplifying using Stirling's Approximation and lim n n log ( 1 + a n ) = a \displaystyle \lim_{n \to \infty } n \log \left(1 + \dfrac{a}{n} \right) = a , we have,

I ( a ) = π [ log ( Γ ( a + 1 ) ) 1 2 log ( 2 a π ) a ( log ( a ) 1 ) ] \displaystyle \text{I} (a) = -\pi \left[\log(\Gamma(a+1)) - \dfrac{1}{2} \log(2a \pi) - a (\log(a) -1) \right]

= π [ 1 2 log ( 2 a π ) + a ( log ( a ) 1 ) log ( Γ ( a + 1 ) ) ] \displaystyle = \pi \left[ \dfrac{1}{2} \log(2a \pi) + a (\log(a) -1) - \log(\Gamma(a+1)) \right] \quad \square

Corollary : 0 log ( 1 + e 2 a π x ) 1 + x 2 d x = π [ log ( Γ ( a ) ) + ( 2 a 1 2 ) log 2 a ( log a 1 ) log ( Γ ( 2 a ) ) ] \displaystyle \int_{0}^{\infty} \dfrac{\log(1+e^{-2a \pi x})}{1+x^2} \mathrm{d}x = \pi \left[ \log(\Gamma(a)) + \left(2a - \dfrac{1}{2}\right) \log 2 - a(\log a -1) - \log (\Gamma(2a)) \right]

Proof : Let G ( a ) = 0 log ( 1 + e 2 a π x ) 1 + x 2 d x \displaystyle \text{G} (a) = \int_{0}^{\infty} \dfrac{\log(1+e^{-2a \pi x})}{1+x^2} \mathrm{d}x

Note that,

G ( a ) = 0 log ( 1 e 4 a π x 1 e 2 a π x ) 1 + x 2 d x \displaystyle \text{G}(a) = \int_{0}^{\infty} \dfrac{\log \left( \dfrac{1-e^{-4a \pi x}}{1-e^{-2a \pi x}} \right)}{1+x^2} \mathrm{d}x

= 0 log ( 1 e 4 a π x ) 1 + x 2 d x 0 log ( 1 e 2 a π x ) 1 + x 2 d x \displaystyle = \int_{0}^{\infty} \dfrac{\log (1-e^{-4a \pi x}) }{1+x^2} \mathrm{d}x - \int_{0}^{\infty} \dfrac{\log (1-e^{-2a \pi x})}{1+x^2} \mathrm{d}x

= I ( 2 a ) I ( a ) \displaystyle = \text{I} (2a) - \text{I} (a)

= π [ log ( Γ ( 2 a + 1 ) ) 1 2 log ( 4 a π ) 2 a ( log ( 2 a ) 1 ) ] π [ log ( Γ ( a + 1 ) ) 1 2 log ( 2 a π ) a ( log ( a ) 1 ) ] \displaystyle =\pi \left[\log(\Gamma(2a+1)) - \dfrac{1}{2} \log(4a \pi) - 2a (\log(2a) -1) \right] - \pi \left[\log(\Gamma(a+1)) - \dfrac{1}{2} \log(2a \pi) - a (\log(a) -1) \right]

= π [ log ( Γ ( a ) ) + ( 2 a 1 2 ) log 2 a ( log a 1 ) log ( Γ ( 2 a ) ) ] \displaystyle = \pi \left[ \log(\Gamma(a)) + \left(2a - \dfrac{1}{2}\right) \log 2 - a(\log a -1) - \log (\Gamma(2a)) \right] \quad \square


1 0 5 0 ln ( 1 + e π x ) 1 + x 2 d x = 22735 \therefore \displaystyle \left \lfloor 10^5 \int_{0}^{\infty}{\frac{-\ln(1+e^{-\pi x})}{1+x^2} \ dx} \right \rfloor = \boxed{-22735}

Wow! That is ingenious!

Samuel Jones - 5 years, 1 month ago
Kartik Sharma
Oct 30, 2015

This is not a solution. It can be seen as a hint or more precisely, Calculus Challenge 9

Prove the following 2 integrals -

0 ln ( 1 e 2 a π x ) d x 1 + x 2 = π [ 1 2 ln 2 a π + a ( ln a 1 ) ln Γ ( a + 1 ) ] \displaystyle \int_{0}^{\infty}{\ln\left(1 - e^{-2a\pi x}\right) \frac{dx}{1+x^2}} = -\pi\left[\frac{1}{2} \ln 2a\pi + a (\ln a - 1) - \ln \Gamma(a+1)\right]

0 ln ( 1 + e 2 a π x ) d x 1 + x 2 = π [ ln Γ ( 2 a ) ln Γ ( a ) + a ( 1 ln a ) ( 2 a 1 2 ) ln 2 ] \displaystyle \int_{0}^{\infty}{\ln\left(1 + e^{-2a\pi x}\right) \frac{dx}{1+x^2}} = \pi\left[\ln\Gamma(2a) - \ln \Gamma(a) + a(1 - \ln a) - \left(2a - \frac{1}{2}\right)\ln 2\right]

@Upanshu Gupta @Pi Han Goh Check this out then!

I love generalizing.

Kartik Sharma - 5 years, 7 months ago

Log in to reply

Challenge accepted! Will be back once I'm able to prove them.

Pi Han Goh - 5 years, 7 months ago

And as it has been declared as Calculus Challenge, it would be incomplete without you @Ishan Singh

Kartik Sharma - 5 years, 7 months ago
Ciara Sean
Oct 29, 2015

π 2 ( 1 log π ) \frac{\pi}{2}(1-\log \pi)

How do you know that it equals to π 2 ( 1 ln π ) \frac\pi2 (1-\ln\pi) ?

Pi Han Goh - 5 years, 7 months ago

Shouldn't it be π 2 ( ln ( π ) 1 ) \displaystyle \frac{\pi}{2} \left(\ln(\pi) - 1\right) ? There is a negative sign too. Please check and tell.

Kartik Sharma - 5 years, 7 months ago

Log in to reply

@Kartik Sharma I checked the function's graph, it was already positive so the answer with your negative sign would be negative! Also, will you care to post the complete solution?? Kinda messed this one!

Kunal Gupta - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...