⌊ 1 0 5 ∫ 0 ∞ 1 + x 2 − ln ( 1 + e − π x ) d x ⌋ = ?
Details and Assumptions:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wow! That is ingenious!
This is not a solution. It can be seen as a hint or more precisely, Calculus Challenge 9
Prove the following 2 integrals -
∫ 0 ∞ ln ( 1 − e − 2 a π x ) 1 + x 2 d x = − π [ 2 1 ln 2 a π + a ( ln a − 1 ) − ln Γ ( a + 1 ) ]
∫ 0 ∞ ln ( 1 + e − 2 a π x ) 1 + x 2 d x = π [ ln Γ ( 2 a ) − ln Γ ( a ) + a ( 1 − ln a ) − ( 2 a − 2 1 ) ln 2 ]
@Upanshu Gupta @Pi Han Goh Check this out then!
I love generalizing.
Log in to reply
Challenge accepted! Will be back once I'm able to prove them.
And as it has been declared as Calculus Challenge, it would be incomplete without you @Ishan Singh
How do you know that it equals to 2 π ( 1 − ln π ) ?
Shouldn't it be 2 π ( ln ( π ) − 1 ) ? There is a negative sign too. Please check and tell.
Log in to reply
@Kartik Sharma I checked the function's graph, it was already positive so the answer with your negative sign would be negative! Also, will you care to post the complete solution?? Kinda messed this one!
Problem Loading...
Note Loading...
Set Loading...
Proof : Let I ( a ) = ∫ 0 ∞ 1 + x 2 lo g ( 1 − e − 2 a π x ) d x
= − r = 1 ∑ ∞ r 1 ∫ 0 ∞ 1 + x 2 e − 2 a r π x d x
= − r = 1 ∑ ∞ r 1 ∫ 0 ∞ ∫ 0 ∞ e − x ( 2 a r π + y ) sin y d y d x
= − r = 1 ∑ ∞ r 1 ∫ 0 ∞ 2 a r π + y sin y d y
= − r = 1 ∑ ∞ r 1 ∫ 0 ∞ 2 a r π + x sin x d x
Substitute x ↦ 2 r π x
⟹ I ( a ) = − r = 1 ∑ ∞ r 1 ∫ 0 ∞ x + a sin 2 r π x d x
= − ∫ 0 ∞ x + a 1 r = 1 ∑ ∞ r sin ( 2 r π x ) d x
= − π ∫ 0 ∞ x + a 1 ( 2 1 − { x } ) d x ( ∵ r = 1 ∑ ∞ r sin ( 2 r π x ) = 2 π − π { x } )
= − π [ ∫ 0 ∞ 2 ( x + a ) d x − ∫ 0 ∞ x + a { x } d x ]
= − π n → ∞ lim [ 2 1 lo g ( a a + n ) − A ( n ) ]
where A ( n ) = ∫ 0 n x + a { x } d x
Now,
A ( n ) = ∫ 0 n x + a { x } d x
= k = 0 ∑ ∞ ∫ k k + 1 x + a x − k d x
= k = 0 ∑ ∞ [ 1 − ( k + a ) lo g ( k + a k + a + 1 ) ]
= n − k = 0 ∑ ∞ [ ( k + a + 1 ) lo g ( k + a + 1 ) − ( k + a ) lo g ( k + a ) − lo g ( k + a + 1 ) ]
= n + a lo g a − ( a + n ) lo g ( a + n ) + lo g ( a ⋅ ( a + 1 ) ⋅ … ⋅ ( a + n ) ) − lo g a
⟹ I ( a ) = − π n → ∞ lim [ 2 1 lo g ( a a + n ) − n − a lo g a + ( a + n ) lo g ( a + n ) − lo g ( a ⋅ ( a + 1 ) ⋅ … ⋅ ( a + n ) ) + lo g a ]
Note that n → ∞ lim t ⋅ ( t + 1 ) ⋅ … ⋅ ( t + n ) n ! n t = Γ ( t )
⟹ I ( a ) = − π n → ∞ lim [ 2 1 lo g ( a a + n ) − n − a lo g a + ( a + n ) lo g ( a + n ) − a lo g ( n ) − lo g ( n ! ) + lo g ( Γ ( a ) ) + lo g a ]
Simplifying using Stirling's Approximation and n → ∞ lim n lo g ( 1 + n a ) = a , we have,
I ( a ) = − π [ lo g ( Γ ( a + 1 ) ) − 2 1 lo g ( 2 a π ) − a ( lo g ( a ) − 1 ) ]
= π [ 2 1 lo g ( 2 a π ) + a ( lo g ( a ) − 1 ) − lo g ( Γ ( a + 1 ) ) ] □
Proof : Let G ( a ) = ∫ 0 ∞ 1 + x 2 lo g ( 1 + e − 2 a π x ) d x
Note that,
G ( a ) = ∫ 0 ∞ 1 + x 2 lo g ( 1 − e − 2 a π x 1 − e − 4 a π x ) d x
= ∫ 0 ∞ 1 + x 2 lo g ( 1 − e − 4 a π x ) d x − ∫ 0 ∞ 1 + x 2 lo g ( 1 − e − 2 a π x ) d x
= I ( 2 a ) − I ( a )
= π [ lo g ( Γ ( 2 a + 1 ) ) − 2 1 lo g ( 4 a π ) − 2 a ( lo g ( 2 a ) − 1 ) ] − π [ lo g ( Γ ( a + 1 ) ) − 2 1 lo g ( 2 a π ) − a ( lo g ( a ) − 1 ) ]
= π [ lo g ( Γ ( a ) ) + ( 2 a − 2 1 ) lo g 2 − a ( lo g a − 1 ) − lo g ( Γ ( 2 a ) ) ] □
∴ ⌊ 1 0 5 ∫ 0 ∞ 1 + x 2 − ln ( 1 + e − π x ) d x ⌋ = − 2 2 7 3 5