Problems need HardWork #23

Find the number of integer pairs ( x , y ) (x,y) such that :

( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x y ) ( 1 x y ) = 4 ( 1 + x y ) (x^2 + 1)(y^2 + 1) + 2(x - y)(1 - xy) = 4(1 + xy)

8 10 0 29 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ravi Dwivedi
Sep 27, 2015

( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x y ) ( 1 x y ) = 4 ( 1 + x y ) (x^2 + 1)(y^2 + 1) + 2(x - y)(1 - xy) = 4(1 + xy)

x 2 y 2 2 x y + 1 + x 2 + y 2 2 x y + 2 ( x y ) ( 1 x y ) = 4 x^{2}y^{2} -2xy +1 + x^{2} +y^{2} -2xy + 2(x - y)(1 - xy) = 4

( x y 1 ) 2 + ( x y ) 2 2 ( x y ) ( x y 1 ) = 4 (xy-1)^2 + (x-y)^2-2(x-y)(xy-1)=4

( ( x y 1 ) ( x y ) ) 2 = 4 ((xy-1)-(x-y))^2=4

( x + 1 ) ( y 1 ) = ± 2 (x+1)(y-1)= \pm 2

If ( x + 1 ) ( y 1 ) = 2 (x+1)(y-1)=2 then

{ x + 1 = 2 y 1 = 1 \begin{cases} x+1=2 \\ y-1=1 \\ \end{cases}

{ x + 1 = 2 y 1 = 1 \begin{cases} x+1=-2 \\ y-1=-1 \\ \end{cases}

{ x + 1 = 1 y 1 = 2 \begin{cases} x+1=1 \\ y-1=2 \\ \end{cases}

{ x + 1 = 1 y 1 = 2 \begin{cases} x+1=-1 \\ y-1=-2 \\ \end{cases}

yielding the solutions ( 1 , 2 ) , ( 3 , 0 ) , ( 0 , 3 ) , ( 2 , 1 ) (1,2),(-3,0),(0,3),(-2,-1)

If ( x + 1 ) ( y 1 ) = 2 (x+1)(y-1)=-2 then

{ x + 1 = 2 y 1 = 1 \begin{cases} x+1=2 \\ y-1=-1 \\ \end{cases}

{ x + 1 = 2 y 1 = 1 \begin{cases} x+1=-2 \\ y-1=1 \\ \end{cases}

{ x + 1 = 1 y 1 = 2 \begin{cases} x+1=1 \\ y-1=-2 \\ \end{cases}

{ x + 1 = 1 y 1 = 2 \begin{cases} x+1=-1 \\ y-1=2 \\ \end{cases}

yielding the solutions ( 1 , 0 ) , ( 3 , 2 ) , ( 0 , 1 ) , ( 2 , 3 ) (1,0),(-3,2),(0,-1),(-2,3)

So there are 8 8 pairs which satisfy the given equation

Moderator note:

What motivated the factorization?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...